Milbemycin Synthesis: Synthesis of a Macrocyclic Analogue of Non-Aromatic β-Milbemycins

Mark J. Hughes and Eric J. Thomas* \dagger
The Dyson Perrins Laboratory, South Parks Road, Oxford, OX1 3QY, UK

Abstract

Stereoselective base-catalysed addition of the keto ester 15 and 3-methylbut-3-en-2-one gave the hydroxycyclohexanone 16. Reduction and methylation gave the monomethyl ether 23, which was regioselectively converted into the butenolide 25 by oxidation using bromine in methanol and hydrolysis of the mixture of intermediate dimethoxydihydrofurans 24. Bromination of the butenolide 25 followed by hydrolysis gave the hydroxybutenolide 40 which was condensed with the ylide generated from the phosphonium salt 62 to give the conjugated dienes 63 and 64 . Treatment with a trace of iodine induced (Z) - to (E)-isomerisation of the 10,11-double bond, and ester exchange under basic conditions with 2-(trimethylsilyl)ethanol followed by esterification with diazomethane gave the diesters 67 and 70. Deprotection gave a mixture of the hydroxy acids 71 and 72 , and the hydroxy acid 71 was cyclised to give the macrolide 73. Reduction of the methyl ester gave the alcohol 74. a macrocyclic analogue of non-aromatic β-milbemycins.

The milbemycins and avermectins comprise an important group of macrocyclic natural products with pronounced biological activities. ${ }^{1,2}$ Members of the group include the α milbemycins which are characterised by the presence of a nonaromatic $C(1)-C(9)$ fragment fused to a tetrahydrofuran ring, e.g. milbemycin $\alpha_{1} 1,{ }^{3}$ and the avermectins which are structurally similar except for a disaccharide attached at $\mathrm{C}(13)$, e.g. avermectin $\mathrm{B}_{2 \mathrm{a}} 2 .{ }^{4}$ In contrast, the β-milbemycins have a monocyclic $\mathrm{C}(1)-\mathrm{C}(9)$ fragment and include both non-aromatic and aromatic compounds, e.g. milbemycin $\beta_{1} 3$ and milbemycin $\beta_{3} 4 .{ }^{5}$

The synthesis of milbemycins and avermectins has been of considerable interest because of their biological activities. ${ }^{2}$ Several total syntheses of both the aromatic and non-aromatic β-milbemycins ${ }^{6.7}$ and the more challenging α-milbemycins and avermectins have been described. ${ }^{8}$ However, there remains a need for additional milbemycin syntheses which are convergent and which can be used to provide analogues for biological evaluation. We here report preliminary work which has helped to define a strategy for a milbemycin synthesis, together with a total synthesis of a macrocyclic analogue of the non-aromatic β milbemycins. ${ }^{9}$

An approach to the synthesis of non-aromatic β-milbemycins, e.g. 3, was envisaged in which a crucial step would be the formation of the $\mathrm{C}(10)-\mathrm{C}(11)$ double bond by nucleophilic addition of the $\mathrm{C}(11)-\mathrm{C}(25)$ fragment 5 to the aldehyde 6. Deprotection and macrocyclisation of the coupled product would then complete a convergent synthesis of a non-aromatic β-milbemycin. The furan 7 was considered a suitable starting material for the stereospecific synthesis of the unsaturated protected γ-hydroxy aldehyde 6 .

In preliminary studies it was decided to leave out the $\mathrm{C}(3)-\mathrm{C}(4)$ double bond in order to facilitate the development of the necessary methodology, and the cyclohexane derivative 8 was identified as our first synthetic target. The incorporation of compound 8 into a synthesis of a diene corresponding to the $\mathrm{C}(1)-\mathrm{C}(12)$ fragment of a non-aromatic 3,4-dihydro- β milbemycin would help to establish the viability of our strategy. ${ }^{9}$

The base-catalysed Robinson annelation of ethyl 3-oxo-3phenylpropanoate (ethyl benzoylacetate) 9 with methyl vinyl

[^0]ketone is known to give the hydroxycyclohexanone 10 stereoselectively. ${ }^{10}$ This adduct, although racemic, has the same relative configuration at $\mathrm{C}(2)$ and $\mathrm{C}(7)$ as the target compound 8. Moreover, reduction of the cyclohexanone 10 using sodium triacetoxyborohydride is highly stereoselective, giving the diol 11 which has the required stereochemistry at C(5). Indeed, prior to the onset of our work, this chemistry had been used to provide rapid access to simple milbemycin analogues. ${ }^{10}$ It was decided to investigate the use of this Robinson annelationreduction sequence to synthesize the target compound $8 . \ddagger$

Synthesis and Modification of the Ethyl Hydroxycyclo-hexanecarboxylate.-To gain familiarity with the Robinson reaction, 3-methylbut-3-en-2-one ${ }^{11}$ was added to a solution of ethyl 3-oxo-3-phenylpropanoate and sodium hydroxide in ethanol. This gave the hydroxycyclohexanone 12, which was reduced using sodium triacetoxyborohydride to give diol 13^{12} in excellent yield (Scheme 1). Attempts to monomethylate this diol at the $5-\mathrm{OH}$ under basic conditions were unsuccessful, and mixtures of monomethylated and dimethylated products were obtained. However, trimethyloxonium tetrafluoroborate in the presence of anhydrous potassium carbonate was more effective, and gave the required methyl ether 14 in 68% yield together with a small amount of unchanged starting material.

Ethyl3-(2-fury)-3-oxopropanoate [ethyl(3-furoyl)acetate] 15 was prepared by acylation of ethyl acetate using 3 -furoyl chloride (Scheme 2). Lithium hexamethyldisilazide (LiHMDS) was used as the base in this reaction since lithium diisopropylamide (LDA) tended to react with the acid chloride. The addition of the keto ester 15 to 3-methylbut-3-en-2-one was found to be sensitive to the reaction conditions. The major product was identified as the required adduct 16 , which was isolated by recrystallisation of the crude mixture of products. However, chromatography of the reaction products gave the open-chain diketone 17 as a mixture of diastereoisomers in addition to the required product, and the use of an acidic workup gave a third product identified as the cyclohexenone 18. By avoiding the use of acidic conditions during isolation of the product, the required hydroxycyclohexanone 16 was isolated by crystallisation of the crude product mixture in yields of

[^1]

2

3

5

$\mathbf{P}=$ protecting group

7

Reagents: i, but-3-en-2-one, NaOH ; ii, $\mathrm{NaBH}(\mathrm{OAc})_{3}$.
up to 70%. The structures of the adducts 12 and 16 were established by spectroscopic methods, and the stereochemistry of compound 16 was eventually confirmed by an X-ray study (see below).

The reduction of the hydroxycyclohexanone 16 was studied using a range of reducing agents. With sodium borohydride in ethanol, two products were obtained in yields of 66 and 29%. The major product was identified as the diaxial diol 19 on the basis of extensive NMR studies and by conversion into the cyclic carbonate 21, and the minor product was identified as the required 5β-isomer 20 by NMR spectroscopy. Of interest here was the presence of a four-bond W-coupling of 2.6 Hz between the $7-\mathrm{OH}$ and $6-\mathrm{Hax}$. The diaxial diol 19 was the major product from reduction of the ketone 16 using sodium cyanoborohydride, lithium butylborohydride, or diisobutylaluminium hydride (DIBAL-H), and was the only product isolated using lithium tri-sec-butylborohydride (88%). The β-face of the ketone would appear to be the more accessible, with the α-face

14

Scheme 1 Reagents: i, $\mathrm{NaOH}, \mathrm{EtOH}\left(62 \%\right.$); ii, $\mathrm{NaBH}(\mathrm{OAc})_{3}(93 \%) ;$ iii, $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}{ }^{-}, \mathrm{K}_{2} \mathrm{CO}_{3}(68 \%)$.

Scheme 2 Reagents: i, $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathrm{MeCO}_{2} \mathrm{Et}(93 \%)$;ii, NaOH , EtOH (16, 56\%); iii, $\mathrm{NaBH}_{4}, \mathrm{EtOH}\left(19,66 \% ; 20,29 \%\right.$); LiBHBu_{3} (19, 88%); iv, $\mathrm{NaBH}(\mathrm{OAc})_{3}$ (20, 98%); v, CO (imid) ${ }_{2}(68 \%$); vi, methanesulfonyl chloride, pyridine (88%); vii, $\operatorname{DBU}(97 \%)$; viii, $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}$; then $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}(43 \%)$; ix, $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}{ }^{-}(72 \%)$.

Scheme 3 Reagents: i, $\mathrm{Br}_{2}, \mathrm{MeOH}$; ii, aq. $\mathrm{HCl}, \mathrm{THF}(81 \%)$
being shielded by the axial $7-\mathrm{OH}$. However as in the phenyl series, the stereoselectivity of reduction was reversed using intramolecular delivery ${ }^{12}$ of sodium acetoxyborohydride by the $7-\mathrm{OH}$ group giving the 5β-alcohol 20 (98%).

25
As an alternative route to the alcohol 20, the diaxial diol 19 was converted into the alkene 22 by mesylation and elimination, and the alkene was hydroborated using borane-dimethyl sulfide complex. This gave the diol $20(43 \%)$ together with a minor sideproduct which was not identified.

Selective monomethylation of the diol 20 was carried out using the trimethyloxonium tetrafluoroborate procedure to give the methyl ether $23(72 \%)$. Methyl ether $\mathbf{2 3}$ corresponds to the primary synthetic target 8 , and so the synthesis of compound 23 completed the first phase of the proposed programme.

Modification of the Furan Ring.-The next phase of the synthesis involved the conversion of the furan 23 into a protected hydroxy aldehyde corresponding to 3,4 -dihydro-6, and its incorporation into a synthesis of an analogue of the conjugated diene fragment of the milbemycins. A crucial aspect of this phase of the work was the discrimination between the 2 - and 5 -position of the furan.

Preliminary studies into the oxidation of the furan 23 with m chloroperbenzoic acid (MCPBA), tert-butyl hydroperoxide in the presence of a vanadium catalyst, ${ }^{13}$ or N -bromosuccinimide (NBS) in aqueous 1,4 -dioxane, gave complex mixtures of products that were difficult to characterise. However, addition of bromine in methanol gave a mixture of the $2,5-\mathrm{di}$ methoxydihydrofurans 24 , which was hydrolysed using aqueous hydrochloric acid in tetrahydrofuran (THF) to give the butenolide 25 as a single regioisomer (Scheme 3). ${ }^{14}$ The structure of the butenolide was established by comparison of the chemical shift of its vinyl proton ($\delta 7.5$) with those of 3and 4-methylfuran-2-($5 H$)-one 26 and 27 ($\delta 7.24$ and 5.79, respectively). ${ }^{15}$

The excellent regioselectivity observed in this hydrolysis was somewhat unexpected and is consistent with the selective participation of the oxonium ion 29. Loss of a proton from species 29 would give the 2 -methoxyfuran 30 , which would hydrolyse rapidly to the butenolide 25 . It may be that the $7-\mathrm{OH}$ displaces the methanol from the dimethoxydihydrofuran to give intermediate 29 via the epoxide 28. Alternatively, perhaps the oxonium ion 29 is formed selectively because of stabilisation by the hydroxyalkyl substituent on the furan ring.

An alternative synthesis of the butenolide $\mathbf{2 5}$ was investigated which involved regioselective oxidation of a 2-(trimethylsilyl)furan. ${ }^{16}$ Ethyl 3-oxo-3-(2-trimethylsilyl-3-furyl)propanoate 31 was prepared by condensation of the acid chloride of 2 -trimethylsilyl-3-furoic acid with ethyl acetate, and was treated with 3-methylbut-3-en-2-one and base to give the hydroxycyclohexanone 33 together with the open-chain diketone 32 (Scheme 4). These appeared to be in equilibrium, the yields of the hydroxycyclohexanone 33 being improved by repeated crystallisation of the crude product ($60-70 \%$). Reduction of the hydroxycyclohexanone using sodium triacetoxyborohydride

TMS $=\mathrm{SiMe}_{3}$
Scheme 4 Reagents: i, $\mathrm{NaOH}, \mathrm{EtOH}$ (33, 66\%); ii, $\mathrm{NaBH}(\mathrm{OAc})_{3}$ (78%); iii, $\mathrm{Br}_{2}, \mathrm{MeOH}$; then aq. HCl, THF $\left(35,54 \% ; 36,31 \%\right.$); iv, Br_{2}, MeOH ; then TFA, acetone (68%); v, $\mathrm{NaBH}_{4} ; \mathrm{vi}, \mathrm{HO}\left[\mathrm{CH}_{2}\right]_{3} \mathrm{OH}$, $\mathrm{CuSO}_{4}(50 \%)$.
gave the dihydroxycyclohexanecarboxylate 34 exclusively (78%).
Oxidation of the trimethylsilylfuran 34 using peracetic acid gave only modest yields of the butenolide 35, and treatment of compound 34 with bromine in methanol gave a mixture of products which, on hydrolysis using aq. hydrochloric acid in THF, gave the butenolide $35(54 \%)$ and the bromofuran 36 (30%). The latter product was useful in that it was converted into the aldehyde 37 by further oxidation using bromine in methanol followed by hydrolysis in aqueous acid. This procedure gave the aldehyde 37 in 68% yield based on the bromofuran 36. Reaction of the aldehyde with sodium cyanoborohydride gave the butenolide 35 and treatment with propane-1,3-diol gave the acetal 38. However, as a route to the butenolide 35, this chemistry of the trimethylsilylfuran 34 didn't compare with the bromination and hydrolysis of the parent furan 23.*
Bromination of the butenolide 25 using NBS gave the 5bromobutenolide 39, which gave an excellent yield of the 5hydroxybutenolide $\mathbf{4 0}$ on mild acid hydrolysis (Scheme 5). ${ }^{19}$

Scheme 5 Reagents: i, N-bromosuccinimide; ii, aq. acetone (75\% overall).

Under basic conditions, 5-hydroxybutenolides are known to equilibrate with ring-opened aldehyde-carboxylates. The

* The direct conversion of the silylfuran 34 into the hydroxybutenolide using singlet oxygen ${ }^{17}$ was developed subsequently. ${ }^{18}$
hydroxybutenolide $\mathbf{4 0}$ is therefore synthetically equivalent to the aldehyde-carboxylic acid 41 and was expected to condense with C-nucleophiles to provide the conjugated diene fragment of the milbemycins.

Synthesis of Conjugated Dienes.-The next phase of the synthesis involved the conversion of the hydroxybutenolide into an analogue of the $\mathrm{C}(1)-\mathrm{C}(12)$ fragment of a 3,4dihydromilbemycin incorporating the $(8 E, 10 E)$-diene unit. The addition of an excess of butyllithium or lithiated ethyl phenyl sulfone to the hydroxybutenolide 40 gave the 5 -substituted butenolides 42 and 43 as mixtures of epimers, ${ }^{20}$ but attempts to convert these into the dienyl acids 44 ($\mathrm{R}=\mathrm{Pr}, \mathrm{Me}$) by baseinduced or reductive elimination were unsuccessful. The hydroxybutenolide 40 was condensed with ethyl- and 2-methyl-propyl-triphenylphosphorane but gave predominantly the (Z, Z)-dienes 45 and 47 , which were characterised as their esters 46 and 48 , rather than the (Z, E)-isomers required as models for a milbemycin synthesis. Moreover, using methoxycarbonylmethylenetriphenylphosphorane, ${ }^{21}$ only the lactone 50 was isolated, formed perhaps by in situ cyclisation of the initially formed diene 49.

43

44

$45 \mathrm{R}=\mathrm{H}$

49

Reagents: $\mathrm{i}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me} ;$ ii, I_{2}.
Attempts to reverse the (Z)-selectivity of the Wittig reactions by using the Schlosser modification were not promising. ${ }^{22}$ However, it was found that clean isomerisation occurred on treatment of the Wittig products with a trace of iodine in benzene in sunlight. Thus the hydroxybutenolide 40 was
condensed with 2-methylpropylidenetriphenylphosphorane and the product was isomerised using a trace of iodine to give the (Z, E)-dienyl acid 51 in $>70 \%$ overall yield.

To complete a synthesis of an analogue of the $\mathrm{C}(1)-\mathrm{C}(12)$ fragment of a 3,4-dihydro- β-milbemycin, it remained to reduce the dienyl acid 51 to the primary alcohol 52. However, all attempts to reduce the acid or a derivative of the acid, e.g. a mixed anhydride, were unsuccessful. Either unchanged starting material or complex mixtures of products were obtained.

Although disappointing, it was thought that this difficulty was due to a limitation of the model rather than the synthetic strategy. The primary alcohol group in compound 52 can easily approach the $C(1)$ carboxy-group carbon to form a sixmembered lactone. A stereoelectronically favoured anti-dehydration would then provide a conjugated trienyl lactone, which would be reduced further under the reaction conditions to give a complex mixture of products. As models showed that formation of a six-membered lactone is not possible for the milbemycins themselves due to conformational restrictions imposed by the macrocycle, it was decided to attempt to synthesize a macrocyclic milbemycin analogue to test the final steps of the synthetic strategy.

Synthesis of a Macrocyclic β-Milbemycin Analogue.-The phosphonium salt 62 was identified as a useful intermediate for the synthesis of a macrocyclic milbemycin analogue since it should lead to a 16 -membered lactone with similar steric constraints to the milbemycins. Methanolysis of the bicyclic lactone 53^{23} gave the hydroxy ester 54 , protected as its silyl ether 55 (Scheme 6). The ester was reduced selectively to the

Scheme 6 Reagents: i, $\mathrm{NaOMe}, \mathrm{MeOH}$; ii, $\mathrm{Bu}^{\mathbf{t}}-\mathrm{Me}_{2} \mathrm{SiCl}$, imidazole (61% of 55 from 53); iii, DIBAL-H (81%); iv, $\mathrm{MeC}(\mathrm{MgBr})=\mathrm{CH}_{2}(87 \%)$; $\mathrm{v}, \mathrm{MeC}(\mathrm{OMe})_{3}, \mathrm{EtCO}_{2} \mathrm{H}$, xylene, heat, $24 \mathrm{~h} ; \mathrm{vi}, \mathrm{LiAlH}_{4}(82 \%$ of 59 from 57); vii, methanesulfonyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$; viii, NaI , acetone (87% from 59); ix, $\mathrm{Ph}_{3} \mathrm{P}$, DMF.
aldehyde 56, which gave a mixture of the epimeric alcohols 57 on addition of prop-2-en-2-ylmagnesium bromide. A Claisen rearrangement of these alcohols gave the unsaturated ester 58, which was reduced to provide the primary alcohol 59. This was converted into the phosphonium salt 62 via the mesylester 60 and the iodide 61.

The Wittig condensation between the racemic phosphonium
salt 62 and the racemic hydroxybutenolide 40 was carried out using LiHMDS as base. An excess of the phosphonium salt was treated with two mole equivalents of the base, and the solution of ylide so formed was added at $-78^{\circ} \mathrm{C}$ to a solution of the hydroxybutenolide which had previously been treated with two mole equivalents of LiHMDS. This procedure gave an 80% yield of a mixture of products identified as the diastereoisomeric dienyl acids $63,64,65$ and 68 , mainly as their $10,11-(Z)$-isomers 63 and 64 (Scheme 7). These diastereoisomers could not be separated, and were not distinguishable by ${ }^{1} \mathrm{H}$ NMR spectroscopy, but it was assumed that both were present since no discrimination was expected during the condensation of the racemic hydroxybutenolide with the racemic phosphorane. Treatment of the Wittig products 63 and 64 with a trace of iodine in benzene induced clean $(Z)-(E)$-isomerisation of their 10,11-double bonds, and gave the (Z, E)-acids 65 and 68.

It was now necessary to reverse the functionality of the ester at $\mathrm{C}(1)$ and the acid at $\mathrm{C}\left(10^{\prime}\right)$ before a macrolide analogous to a milbemycin could be formed. To this end, the mixture of acids 65 and 68 was treated with 2(trimethylsilyl)ethanol under anhydrous, basic conditions to give the 2-trimethylsilyl esters 66 and 69 via ester exchange at $C(1)$; the $C\left(10^{\prime}\right)$ acids were unchanged under these conditions. Esterification with diazomethane then gave the diesters 67 and 70. These were deprotected using fluoride and acid to give the dihydroxy acids 71 and 72 which were distinguishable by ${ }^{1} \mathrm{H}$ NMR spectroscopy for the first time in the synthesis, perhaps because of long-range hydrogen bonding.

Treatment of the mixture of dihydroxy acids 71 and 72 with chloro- N-methylpyridinium iodide ${ }^{24}$ and triethylamine under high-dilution conditions induced cyclisation of one of the diastereoisomers to give a single macrocyclic product. This was shown to be the required diastereoisomer 73 by X-ray crystallography, ${ }^{9}$ and had been formed by selective cyclisation of the hydroxy acid 71. No product from cyclisation of the 'unnatural' isomer 72 was isolated, and it would appear that compound 72 decomposed to baseline material under the cyclisation conditions. Models indicate that cyclisation of the dihydroxy acid 72 is impeded by the cyclohexane ring whereas for cyclisation of the 'natural' diastereoisomer 71 the cyclohexane ring facilitates macrocyclisation by restricting the conformations available to the cyclisation precursor.

Having prepared the macrocyclic methyl ester 73, we examined the selective reduction of the ester. It was found that reduction using lithium bis-(2-methoxyethoxy)aluminium hydride (REDAL-H) was very effective, and gave the alcohol 74 in 85% yield so completing the synthesis of a macrocyclic analogue of milbemycin $\beta_{1} 3$.

Conclusions.-This synthesis of the macrocyclic alcohol 74 established the viability of our strategy for a convergent synthesis of β-milbemycins. It remained to develop a procedure for the regioselective introduction of the 3,4-double bond, and for the synthesis of the spiroacetal-containing fragment. Studies of these aspects, ${ }^{18,25,26}$ and a synthesis of a non-aromatic β milbemycin using this strategy, ${ }^{7}$ will be outlined in future papers together with the application of this approach to the synthesis of α-milbemycins. ${ }^{27,28}$ Of interest in the present work is the stereoselective formation and reduction of the hydroxycyclohexanones 16 and 33 , the regioselective hydrolysis of the dimethoxydihydrofuran 24 , the synthesis and isomerisation of the conjugated diene fragment of the milbemycins, the selective macrocyclisation of the hydroxy acid 71 which has the same relative configuration as the natural products, and the efficient reduction of the macrolide ester 73.

$65 \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}$
$68 \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}$
$66 R^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}, \mathrm{R}^{2}=\mathrm{H}$
$69 \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}, \mathrm{R}^{2}=\mathrm{H}$
$67 \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}, \mathrm{R}^{2}=\mathrm{Me}$
$70 \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}, \mathrm{R}^{2}=\mathrm{Me}$

Scheme 7 Reagents: i, $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}, \mathbf{6 2 - L i}(86 \%) ;$ ii, $\mathrm{I}_{2}(97 \%$); iii, $\mathrm{Bu}^{\mathrm{t} L i}, \mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\left(53 \%\right.$); iv, $\mathrm{CH}_{2} \mathrm{~N}_{2}(99 \%)$; v, TBAF, KF; then hydrochloric acid (93%); vi, 2-chloro- N -methylpyridinium iodide (44% based on 71); vii, $\mathrm{LiAlH}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)_{2}(85 \%)$.

Experimental

All non-aqueous reactions were performed under argon. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker WA 300 or a Bruker WH 500 spectrometer. J-Values are given in Hz . IR spectra were measured on a Perkin-Elmer 257 or on a Pye Unicam SP3-200 spectrometer as evaporated films unless otherwise stated. Mass spectra were recorded on a VG micromass ZAB 16 F mass
spectrometer using electron impact (EI) or chemical ionisation (CI) modes. M.p.s were determined on a Buchi 510 apparatus.

All solvents were dried and distilled before use. Light petroleum refers to the fraction which distils at $40-60^{\circ} \mathrm{C}$, and ether to diethyl ether. Chromatography refers to flash chromatography on Merck silica ($40-63 \mathrm{~mm}^{3} ; 230-400$ mesh). 3-Furoyl chloride was prepared by heating of a solution of 3furoic acid in thionyl dichloride under reflux for 1 h . Concentration under reduced pressure gave 3-furoyl chloride, which was used without further purification.
(1RS,2SR,5SR)-Ethyl 2-Hydroxy-5-methyl-4-oxo-2-phenylcyclohexanecarboxylate 12.-3-Methylbut-3-en-2-one ${ }^{11}$ ($1 \mathrm{~g}, 12$ mmol) was blown as a vapour in nitrogen over a period of 12 h into a solution of ethyl 3-oxo-3-phenylpropanoate ${ }^{9}\left(1.2 \mathrm{~cm}^{3}\right.$, 6.9 mmol) and sodium hydroxide ($0.1 \mathrm{~g}, 2.5 \mathrm{mmol}$) in ethanol ($10 \mathrm{~cm}^{3}$). The mixture was cooled to $-22^{\circ} \mathrm{C}$, and the crude product was isolated by filtration. Recrystallisation from ethanol gave the title compound 12 ($1.19 \mathrm{~g}, 62 \%$) as plates, m.p. $90-92^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 69.45 ; \mathrm{H}, 7.05 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}$ requires C, $69.55 ; \mathrm{H}, 7.3 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3490,1720,1370,1340$, 1300 and $1180 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.94(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{2} M e\right), 1.09(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH} M e), 2.1\left(1 \mathrm{H}, \mathrm{q}, J 12.5,6-\mathrm{H}^{\mathrm{ax}}\right)$, 2.2-2.3 (1 H, m, 6-H $\left.{ }^{\text {eq }}\right), 2.4-2.55(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.55(2 \mathrm{H}, \mathrm{s}, 3-$ $\left.\mathrm{H}_{2}\right), 3.47(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and $4,1-\mathrm{H}), 3.8-3.99(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH} \mathrm{O}_{2} \mathrm{Me}\right), 4.16(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $7.1-7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z$ (EI) $276\left(\mathrm{M}^{+}, 4 \%\right)$ and 77 (100).
(1RS,2SR,4SR,5SR)-Ethyl 2,4-Dihydroxy-5-methyl-2-phenylcyclohexanecarboxylate 13.-Sodium borohydride ($0.29 \mathrm{~g}, 8$ mmol) was added to rapidly stirred acetic acid ($20 \mathrm{~cm}^{3}$) at such a rate that the temperature did not exceed $20^{\circ} \mathrm{C}$. After being stirred for 30 min , the solution was added to the ketone $12(1.1 \mathrm{~g}$, 4 mmol), and the reaction mixture was stirred for 30 min before being concentrated under reduced pressure, and the residue was dissolved in ether ($100 \mathrm{~cm}^{3}$). The ethereal solution was washed with aq. sodium hydroxide ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 2 \times 50 \mathrm{~cm}^{3}$), dried over anhydrous potassium carbonate, and concentrated under reduced pressure to leave the title compound $13(1.03 \mathrm{~g}, 93 \%)$, which was recrystallised from hexane-ether, m.p. $128^{\circ} \mathrm{C}$ (Found: C, 69.05; $\mathrm{H}, 7.9 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{C}, 69.05 ; \mathrm{H}, 7.95 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3620,3480,3005,1710,1375,1180,1060$ and $1030 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.65\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 1.09(3 \mathrm{H}$, $\mathrm{d}, J 6, \mathrm{CHMe}), 1.19(1 \mathrm{H}$, br s, $4-\mathrm{OH}), 1.32(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.44$ $\left(1 \mathrm{H}\right.$, ddd, $J 12,10$ and $\left.2,3-\mathrm{H}^{\mathrm{ax}}\right), 1.68(1 \mathrm{H}, \mathrm{dt}, J 12.5$ and 3.5 , $\left.6-\mathrm{H}^{\mathrm{eq}}\right), 1.88\left(1 \mathrm{H}, \mathrm{q}, J 12.5,6-\mathrm{H}^{\mathrm{ax}}\right), 2.17(1 \mathrm{H}, \mathrm{dd}, J 12$ and 4.5 , $\left.3-\mathrm{H}^{\mathrm{eq}}\right), 2.92(1 \mathrm{H}$, dd, $J 12.5$ and $3.5,1-\mathrm{H}), 3.66(2 \mathrm{H}, \mathrm{q}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 3.78(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2,2-\mathrm{OH})$ and $7.1-7.6$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z (EI) $278\left(\mathrm{M}^{+}, 9 \%\right.$) and 105 (100).
(1RS,2SR,4SR,5SR)-Ethyl 2-Hydroxy-4-methoxy-5-methyl-2-phenylcyclohexanecarboxylate 14.-A solution of the diol 13 $(190 \mathrm{mg}, 0.68 \mathrm{mmol})$ in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ was added to a stirred suspension of trimethyloxonium tetrafluoroborate (950 $\mathrm{mg}, 0.64 \mathrm{mmol}$) and anhydrous potassium carbonate $(430 \mathrm{mg})$ in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at $-22^{\circ} \mathrm{C}$. After being stirred for 18 h , the mixture was filtered through Celite, and the filtrate was concentrated under reduced pressure. Chromatography of the residue (ether-light petroleum) gave unchanged starting material 13 ($53 \mathrm{mg}, 28 \%$ recovery) and the title compound 14 ($135 \mathrm{mg}, 68 \%$) as needles, m.p. $56-58^{\circ} \mathrm{C}$ (from hexane-ether) (Found: $\mathrm{C}, 69.7 ; \mathrm{H}, 8.35 . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $\mathrm{C}, 69.85 ; \mathrm{H}, 8.25 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3480,1710,1375,1180$ and $1090 ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}$) $0.63\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right)$, $1.11(3 \mathrm{H}, \mathrm{d}, J 6.5$, CHMe), $1.37\left(1 \mathrm{H}\right.$, ddd, $J 13,10.5$ and $\left.3,3-\mathrm{H}^{\mathrm{ax}}\right), 1.42-1.67(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 1.71\left(1 \mathrm{H}, \mathrm{dt}, J 13\right.$ and $\left.3.5,6-\mathrm{H}^{\mathrm{eq}}\right), 1.93(1 \mathrm{H}, \mathrm{q}, J 13,6-$ $\left.\mathrm{H}^{\mathrm{ax}}\right), 2.41(1 \mathrm{H}, \mathrm{dd}, J 13$ and 4, 3-Heq $), 2.92(1 \mathrm{H}, \mathrm{dd}, J 13$ and 4 , $1-\mathrm{H}), 3.1$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.42 ($1 \mathrm{H}, \mathrm{td}, J 10.5$ and $4,4-\mathrm{H}$), $3.6(2 \mathrm{H}$,
$\left.\mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.69(1 \mathrm{H}, \mathrm{d}, J 3, \mathrm{OH})$ and $7.02-7.48(5 \mathrm{H}, \mathrm{m}$, ArH); m / z (EI) 292 ($\mathrm{M}^{+}, 2 \%$) and 163 (100).

Ethyl 3-(3'-Furyl)-3-oxopropanoate 15.-Butyllithium (68 $\mathrm{cm}^{3} ; 1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in hexane) was added to a solution of hexamethyldisilazane ($22.2 \mathrm{~cm}^{3}, 105 \mathrm{mmol}$) in THF ($130 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. After 30 min , the solution was cooled to $-78^{\circ} \mathrm{C}$, ethyl acetate $\left(5.2 \mathrm{~cm}^{3}, 53 \mathrm{mmol}\right.$) was added over a 10 min period, and the mixture wasstirred for 1.5 h .3 -Furoyl chloride [from 3-furoic $\operatorname{acid}(5.56 \mathrm{~g}, 49.6 \mathrm{mmol})$ in THF $\left.\left(50 \mathrm{~cm}^{3}\right)\right]$ was added slowly, and the mixture was stirred for 30 min . Saturated aq. ammonium chloride ($50 \mathrm{~cm}^{3}$) was added, and the mixture was allowed to warm to room temperature. Hydrochloric acid ($80 \mathrm{~cm}^{3} ; 3 \mathrm{~mol}$ dm^{-3}) was added, and the organic products were extracted into ether. Concentration of the extracts and distillation of the residue gave the title compound $15(8.4 \mathrm{~g}, 93 \%$ from the acid), b.p. $98-$ $105^{\circ} \mathrm{C}(0.5 \mathrm{mmHg})$ (Found: $\mathrm{C}, 59.45 ; \mathrm{H}, 5.55 . \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires C, $59.35 ; \mathrm{H}, 5.55 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3140,1740,1680,1560$ and 1510 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 3.76(2 \mathrm{H}, \mathrm{s}, 2-$ $\left.\mathrm{H}_{2}\right), 4.20\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 6.79\left(1 \mathrm{H}, \mathrm{d}, J 3,4^{\prime}-\mathrm{H}\right), 7.46(1 \mathrm{H}$, $\left.\mathrm{m}, 5^{\prime}-\mathrm{H}\right)$ and $8.08\left(1 \mathrm{H}, \mathrm{dd}, J 1.5\right.$ and $\left.0.5,2^{\prime}-\mathrm{H}\right) ; m / z(\mathrm{EI}) 182\left(\mathrm{M}^{+}\right.$, 14%) and $95(100)$. Traces of the enol tautomer ($\sim 5 \%$) were apparent from the ${ }^{1} \mathrm{H}$ NMR spectrum; $\delta_{\mathrm{H}} 5.35(2-\mathrm{H})$.
(1RS,2SR,5SR)-Ethyl 2-(3'-Furyl)-2-hydroxy-5-methyl-4oxocyclohexanecarboxylate 16.-A solution of 3-methylbut-3-en-2-one ${ }^{11}(3.1 \mathrm{~g}, 37 \mathrm{mmol})$ in ethanol $\left(20 \mathrm{~cm}^{3}\right)$ was added over a period of 30 min to a solution of the ketoester $15(6 \mathrm{~g}, 33$ mmol) in anhydrous ethanol ($80 \mathrm{~cm}^{3}$) containing aq. sodium hydroxide ($2.5 \mathrm{~cm}^{3} ; 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$), and the mixture was stirred for 17 h at ambient temperature before being concentrated under reduced pressure. The residue was taken up in ether ($250 \mathrm{~cm}^{3}$), and the ethereal solution washed with brine containing sodium hydroxide ($2 \times 100 \mathrm{~cm}^{3}, 0.05 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in sodium hydroxide). After drying ($\mathrm{K}_{2} \mathrm{CO}_{3}$), the organic phase was concentrated under reduced pressure. Recrystallisation of the residue from hexane-ether gave the title compound $16(4.92 \mathrm{~g}, 56 \%)$ as plates, m.p. $60-62^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 63.25 ; \mathrm{H}, 6.7 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$ requires C , $63.15 ; \mathrm{H}, 6.8 \%)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3490,1720,1500,1375,1345$, 1180 and $1030 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.13(3 \mathrm{H}, \mathrm{d}, J 6.5$, CHMe), $1.17\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} M e\right), 2.11\left(1 \mathrm{H}, \mathrm{q}, J 13,6-\mathrm{H}^{\mathrm{ax}}\right)$, $2.22\left(1 \mathrm{H}\right.$, ddd, $J 13,6$ and $\left.4.5,6-\mathrm{H}^{\mathrm{eq}}\right), 2.46-2.55(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $2.53\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.2.5,3-\mathrm{H}^{\mathrm{ax}}\right), 2.69\left(1 \mathrm{H}, \mathrm{d}, J 14.5,3-\mathrm{H}^{\text {eq }}\right)$, $3.24(1 \mathrm{H}, \mathrm{dd}, J 13$ and $4.5,1-\mathrm{H}), 4.05-4.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right)$, $4.26(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{OH}), 6.36\left(1 \mathrm{H}\right.$, dd, $J 1.5$ and $\left.1,4^{\prime}-\mathrm{H}\right)$ and 7.35-7.39 ($2 \mathrm{H}, \mathrm{m}, 2^{\prime}$ - and $5^{\prime}-\mathrm{H}$); m/z (EI) $266\left(\mathrm{M}^{+}, 13 \%\right), 249$ (63) and 95 (100).

Concentration of the mother liquor and chromatography of the residue (ether-light petroleum) gave more of the cyclohexanone $16(1.4 \mathrm{~g}, 16 \%)$ and a second product, identified as a mixture of diastereoisomers of the open-chain diketone 17 (1.1 $\mathrm{g}, 13 \%) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.1-1.4(6 \mathrm{H}, \mathrm{m}), 1.8-2.8(6 \mathrm{H}, \mathrm{m})$, $3.9(1 \mathrm{H}, \mathrm{m}), 4.15\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 6.8(1 \mathrm{H}, \mathrm{s}), 7.4(1 \mathrm{H}, \mathrm{s})$, $8.1(0.4 \mathrm{H}, \mathrm{s})$ and $8.25(0.6 \mathrm{H}, \mathrm{s})$.

Reduction of the 4-Oxocyclohexanecarboxylate 16.-With sodium borohydride. Sodium borohydride ($150 \mathrm{mg}, 4.2 \mathrm{mmol}$) was added to a solution of the ketone $16(500 \mathrm{mg}, 1.9 \mathrm{mmol})$ in ethanol $\left(10 \mathrm{~cm}^{3}\right)$. After being stirred for 30 min , the reaction mixture was diluted with saturated aq. ammonium chloride $\left(10 \mathrm{~cm}^{3}\right)$ and extracted into ether. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. Chromatography (ether-light petroleum) gave two fractions. The major component was identified as (1RS,2SR,4RS,5SR)ethyl 2-(3'-furyl)-2,4-dihydroxy-5-methylcyclohexanecarboxylate $19(330 \mathrm{mg}, 66 \%)$ as an oil (Found: $\mathrm{M}^{+}, 268.1312 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $\mathrm{M}, 268.1311$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3460,1710,1500$, $1180,1095,1030$ and $1000 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.01(3 \mathrm{H}, \mathrm{d}, J$
6.5, CHMe), 1.09 ($3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} M e$), 1.5-1.7 (3 H, m), 1.90 $\left(1 \mathrm{H}, \mathrm{q}, J 13.5,6-\mathrm{H}^{\mathrm{ax}}\right), 2.23\left(1 \mathrm{H}\right.$, dd, $J 15$ and $\left.3,3-\mathrm{H}^{\mathrm{eq}}\right), 2.72$ ($1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $3,1-\mathrm{H}$), $3.69(1 \mathrm{H}$, narrow $\mathrm{m}, 4-\mathrm{H}), 3.9-4.1$ (2 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.09(1 \mathrm{H}$, br d$, J 8.7,4-\mathrm{OH}), 4.96(1 \mathrm{H}, \mathrm{d}, J 2.5$, 2-OH), $6.23\left(1 \mathrm{H}\right.$, dd, J 1.5 and $\left.1,4^{\prime}-\mathrm{H}\right)$ and $7.2-7.3(2 \mathrm{H}, \mathrm{m}$, ArH); m / z (EI) 268 ($\mathrm{M}^{+}, 12 \%$) and 95 (100).

The minor component was identified as (1RS,2SR,4SR,-5SR)-ethyl 2-(3'-furyl)-2,4-dihydroxy-5-methylcyclohexanecarboxylate 20 ($146 \mathrm{mg}, 29 \%$) as a solid, recrystallised from hexane-ether as needles, m.p. $96-97^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 62.65 ; \mathrm{H}$, 7.45. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 62.65 ; \mathrm{H}, 7.5 \%\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3620,3470,1710,1500,1375,1260,1180$ and $1030 ; \delta_{\mathbf{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.04(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}), 1.08(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{CH}_{2} \mathrm{Me}$), 1.3-1.5 (2 H, m), 1.6-1.8 (3 H, m), $2.18(1 \mathrm{H}, \mathrm{dd}, J 13$ and $\left.4.5,3-\mathrm{H}^{\text {eq }}\right), 2.68(1 \mathrm{H}$, dd, $J 12.5$ and $5,1-\mathrm{H}), 3.65(1 \mathrm{H}, \mathrm{td}, J$ 10.5 and $4.5,4-\mathrm{H}), 3.9-4.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-$ $\mathrm{OH}), 6.25\left(1 \mathrm{H}, \mathrm{t}, J 1.5,4^{\prime}-\mathrm{H}\right)$ and $7.26(2 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{ArH}) ; m / z$ (EI) $268\left(\mathrm{M}^{+}, 13 \%\right)$ and 95 (100).

With lithium tri-sec-butylborohydride. Lithium tri-sec-butylborohydride ($0.27 \mathrm{~cm}^{3} ; 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF) was added to a solution of the ketone $16(73 \mathrm{mg}, 0.27 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 4.5 h . Aq. sodium hydroxide ($3 \mathrm{~mol} \mathrm{dm}^{-3} ; 1 \mathrm{~cm}^{3}$) was added, and the mixture was allowed to warm to room temperature. Aq. hydrogen peroxide $\left(0.6 \mathrm{~cm}^{3} ; 30 \%\right)$ was added and the mixture was stirred for 15 min before the addition of saturated ethanolic hydrogen chloride ($1 \mathrm{~cm}^{3}$). The mixture was diluted with ether and the organic phase was separated, washed with hydrochloric acid, and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave the diol 19 ($65 \mathrm{mg}, 88 \%$).

With sodium triacetoxyborohydride. Following the procedure outlined above, the ketone 16 ($7.45 \mathrm{~g}, 28 \mathrm{mmol}$) gave the diol 20 ($7.35 \mathrm{~g}, 98 \%$), shown to be free of its epimer 19 by TLC and NMR spectroscopy.
(1RS,5SR,6RS,8SR)-Ethyl 5-(3'-Furyl)-8-methyl-3-oxo-2,4-dioxabicyclo[3.3.1]nonane-6-carboxylate 21.-A solution of $1,1^{\prime}$-carbonyldiimidazole ($50 \mathrm{mg}, 0.31 \mathrm{mmol}$) in THF ($1 \mathrm{~cm}^{3}$) was added to a mixture of diol $19(65.7 \mathrm{mg}, 0.25 \mathrm{mmol})$ and a trace of sodium hydride in THF ($2 \mathrm{~cm}^{3}$), and the mixture was stirred for 15 min before being diluted with ether $\left(30 \mathrm{~cm}^{3}\right)$, washed with dil. hydrochloric acid ($30 \mathrm{~cm}^{3} ; 1 \mathrm{~mol} \mathrm{dm}^{-3}$), and dried (MgSO_{4}). Concentration under reduced pressure gave a residue, which was chromatographed to give the title compound $21(50 \mathrm{mg}, 68 \%)$ as needles on recrystallisation from hexane-ether, m.p. $90^{\circ} \mathrm{C}$ (Found: C, 61.2 ; $\mathrm{H}, 6.1 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6}$ requires $\mathrm{C}, 61.5$; $\mathrm{H}, 6.15 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1745,1390,1380,1355,1302,1180$, $1170,1155,1125,1110,1050$ and $1035 ; \delta_{\mathbf{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.06\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} M e\right), 1.19(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CHMe}), 1.9-2.0(3 \mathrm{H}$, $\mathrm{m}), 2.16\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.1.5,9-\mathrm{H}^{\mathrm{ax}}\right), 2.38(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $4.5,9-\mathrm{H}^{\mathrm{eq}}$), 2.9 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 3.9-4.1 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}$) 4.55 $(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 6.36\left(1 \mathrm{H}, \mathrm{dd}, J 2\right.$ and $\left.1,4^{\prime}-\mathrm{H}\right), 7.41(1 \mathrm{H}, \mathrm{t}, J 1.8$, ArH) and $7.48(1 \mathrm{H}, \mathrm{dd}, J 2.1, \mathrm{ArH}) ; m / z(\mathrm{EI}) 294\left(\mathrm{M}^{+}, 8 \%\right)$ and 95 (100).
(1 RS,6SR)-Ethyl 6-(3-Furyl)-6-hydroxy-3-methylcyclohex-3enecarboxylate 22.-Methanesulfonyl chloride $\left(0.09 \mathrm{~cm}^{3}, 1.1\right.$ $\mathrm{mmol})$ was added to a solution of diol $19(276 \mathrm{mg}, 1 \mathrm{mmol})$ in pyridine $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After 16 h , the reaction mixture was poured into dil. hydrochloric acid ($50 \mathrm{~cm}^{3} ; 3 \mathrm{~mol} \mathrm{dm}^{-3}$). The aqueous mixture was extracted with ether ($3 \times 50 \mathrm{~cm}^{3}$), and the extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to leave (1RS,2SR,4RS,5SR)-ethyl 2-(3-furyl)-2-hydroxy-5-methyl-4-(methylsulfonyloxy)cyclohexanecarboxylate ($310 \mathrm{mg}, 88 \%$) as needles on recrystallisation from chloroform-hexane, m.p. $84-85^{\circ} \mathrm{C}$ (Found: C, $52.0 ; \mathrm{H}, 6.35 ; \mathrm{S}, 9.1 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{~S}$ requires $\mathrm{C}, 52.0 ; \mathrm{H}, 6.4$; S , $9.25 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3480,1710,1275,1170,1030,975$,

920, 900,890 and $875 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.76(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{CH}_{2} \mathrm{Me}$), 0.95 ($3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CHMe}$), $0.9-1.2$ ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 1.15 ($1 \mathrm{H}, \mathrm{dt}, J 14$ and 2.5), $1.28(1 \mathrm{H}, \mathrm{dt}, J 12.5$ and 3$), 2.08(1 \mathrm{H}, \mathrm{q}$, $\left.J 12.5,6-\mathrm{H}^{\mathrm{ax}}\right)$, 2.3-2.5 ($2 \mathrm{H}, \mathrm{m}$), $2.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OSO}_{2} \mathrm{Me}\right), 3.6-3.8$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}$), $4.5-4.6(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.6(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.5,2-\mathrm{OH})$ and 6.08, 7.06 and 7.12 (each $1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m / z (EI) 346 ($\mathrm{M}^{+}, 1 \%$) and 95 (100).
A solution of the methanesulfonate ($246 \mathrm{mg}, 0.71 \mathrm{mmol}$) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) ($0.5 \mathrm{~cm}^{3}$) in THF $\left(10 \mathrm{~cm}^{3}\right)$ was heated under reflux for 48 h . The reaction mixture was diluted with ether $\left(50 \mathrm{~cm}^{3}\right)$, washed with dil. hydrochloric acid ($50 \mathrm{~cm}^{3} ; 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to leave the title compound $\mathbf{2 2}$ (174 mg , 97%), recrystallised as fine needles from hexane-ether, m.p. $35^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 67.25 ; \mathrm{H}, 7.3 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\mathrm{C}, 67.2 ; \mathrm{H}$, $7.25 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3500,1710,1500,1295,1180,1160$, 1030 and $900 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.05\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{Me}\right)$, $1.67(3 \mathrm{H}, \mathrm{br}$ s, $3-\mathrm{Me}), 2.09\left(1 \mathrm{H}, \mathrm{dd}, J 17\right.$ and $\left.5.5,2-\mathrm{H}^{\mathrm{eq}}\right), 2.26$ (2 H , narrow m, 5-H2), 2.4-2.5 (1 H, m, 2-H ${ }^{\mathrm{ax}}$), $2.88(1 \mathrm{H}, \mathrm{dd}, J$ 11.5 and 6, 1-H), 3.9-4.1 ($3 \mathrm{H}, \mathrm{m}$), $5.3(1 \mathrm{H}$, narrow m, 4-H), 6.24 ($1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $1, \mathrm{ArH}$), $7.27(1 \mathrm{H}, \mathrm{t}, J 2$, ArH) and $7.31(1 \mathrm{H}$, m, ArH); m / z (EI) $250\left(\mathrm{M}^{+}, 21 \%\right), 182$ (88) and 95 (100).

Hydroboration of Alkene 22.-Borane-dimethyl sulfide complex ($0.2 \mathrm{~cm}^{3} ; 2 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF) was added to a solution of the alkene 22 ($31 \mathrm{mg}, 0.125 \mathrm{mmol}$) in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After 20 min . aq. hydrogen peroxide ($1 \mathrm{~cm}^{3} ; 30 \%$) was added followed, after a further 5 min , by aq. sodium hydroxide ($1 \mathrm{~cm}^{3} ; 2 \mathrm{~mol}$ dm^{-3}). The reaction mixture was diluted with ether ($30 \mathrm{~cm}^{3}$), washed with dil. hydrochloric acid ($30 \mathrm{~cm}^{3} ; 1 \mathrm{~mol} \mathrm{dm}^{-3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed to give the diol 20 ($14.5 \mathrm{mg}, 43 \%$) and a minor product (4 mg) which was not identified.
(1RS,2SR,4SR,5SR)-Ethyl 2-(3-Furyl)-2-hydroxy-4-meth-oxy-5-methylcyclohexanecarboxylate 23.-A mixture of diol 20 $(4.5 \mathrm{~g}, 16.8 \mathrm{mmol})$, trimethyloxonium tetrafluoroborate (4.5 g , 31 mmol) and anhydrous potassium carbonate (13.5 g) in dichloromethane ($100 \mathrm{~cm}^{3}$) was stirred for 16 h . The mixture was filtered through Celite, and the filtrate was concentrated under reduced pressure. The residue was chromatographed to give unchanged diol 20 ($0.89,18 \%$ recovery) and the title compound $23(3.4 \mathrm{~g}, 72 \%)$ as fine needles after recrystallisation from hexane-ether, m.p. $60^{\circ} \mathrm{C}$ (Found: C, 63.6; H, 7.9. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5}$ requires $\mathrm{C}, 63.8 ; \mathrm{H}, 7.85 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3480$, $1710,1500,1378,1180,1100,1030$ and $870 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.08(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}), 1.15\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right)$, 1.32 (1 H , ddd, $J 13.5$, 11 and $2.5,3-\mathrm{H}^{\mathrm{ax}}$), 1.4-1.6 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $1.7-1.9\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 2.41\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.4.5,3-\mathrm{H}^{\mathrm{eq}}\right), 2.7-$ $2.8(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.23(1 \mathrm{H}, \mathrm{td}, J 11$ and $4.5,4-\mathrm{H}), 3.37(3 \mathrm{H}, \mathrm{s}$, OMe), $4.0-4.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.42(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{OH}), 6.32$ $(1 \mathrm{H}, \mathrm{t}, J 1.4, \mathrm{ArH})$ and $7.34(2 \mathrm{H}, \mathrm{d}, J 1, \mathrm{ArH}) ; m / z(\mathrm{EI}) 282$ ($\mathrm{M}^{+}, 11 \%$) and 153 (100).
(1RS,2SR,4SR,5SR)-Ethyl 2-(2',5'-Dihydro-2'-oxo-3'-furyl)-2-hydroxy-4-methoxy-5-methylcyclohexanecarboxylate 25.-A solution of bromine ($2.1 \mathrm{~g}, 13 \mathrm{mmol}$) in methanol ($20 \mathrm{~cm}^{3}$) was added to a solution of the furan $23(3.4 \mathrm{~g}, 12.1 \mathrm{mmol})$ and sodium acetate ($3 \mathrm{~g}, 37 \mathrm{mmol}$) in methanol at $0{ }^{\circ} \mathrm{C}$ over a period of 30 min . The mixture was concentrated under reduced pressure and the residue was dissolved in ether $\left(250 \mathrm{~cm}^{3}\right)$. The ethereal solution was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to leave the dimethoxydihydrofurans $24(4.75 \mathrm{~g})$ as a mixture of diastereoisomers, used without further purification.
The dimethoxydihydrofuran mixture was dissolved in THF ($100 \mathrm{~cm}^{3}$) and hydrochloric acid ($30 \mathrm{~cm}^{3} ; 3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) was added. After 30 min , sodium chloride (5 g) was added, and the
mixture was extracted into ether. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure, and the residue was chromatographed to give the title compound 25 (2.9 $\mathrm{g}, 81 \%$) as needles after recrystallisation from hexane-ether, m.p. $92-94^{\circ} \mathrm{C}$ (Found: C, $60.4 ; \mathrm{H}, 7.5 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6}$ requires C, $60.4 ; \mathrm{H}, 7.4 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3460,1755,1700,1190,1100$, 1060,1030 and $1000 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.08(3 \mathrm{H}, \mathrm{d}, J 6.5$, CHMe), $1.21\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 1.55-1.7(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.72$ $\left(1 \mathrm{H}, \mathrm{q}, J 11.5,6-\mathrm{H}^{\text {ax }}\right), 1.8\left(1 \mathrm{H}, \mathrm{t}, J 12.5,3-\mathrm{H}^{\mathrm{ax}}\right), 1.87(1 \mathrm{H}, \mathrm{dt}, J$ $\left.12,4,6-\mathrm{H}^{\mathrm{eq}}\right), 2.07\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.4,3-\mathrm{H}^{\mathrm{eq}}\right), 3.2(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, 3.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.3-3.4 ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$), 4.0-4.17 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 4.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.75-4.8\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right)$ and $7.48-7.52\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right) ; m / z(\mathrm{EI}) 299\left(\mathrm{M}^{+}+1,100 \%\right)$.

Ethyl 3-oxo-3-(2'-trimethylsilyl-3'-furyl)propanoate 31.-2-Trimethylsilyl-3-furoic acid ($13.5 \mathrm{~g}, 73.4 \mathrm{mmol}$) was heated under reflux with thionyl dichloride ($100 \mathrm{~cm}^{3}$) for 40 min . The major part of the excess of thionyl dichloride was removed by distillation, and the remainder under reduced pressure, to leave 2-(trimethylsilyl)-3-furoyl chloride which was used without purification.
Butyllithium ($96 \mathrm{~cm}^{3} ; 1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane) was added to a solution of hexamethyldisilazane ($32.5 \mathrm{~cm}^{3}, 154 \mathrm{mmol}$) in THF $\left(200 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After 30 min , the solution was cooled to $-78^{\circ} \mathrm{C}$ and ethyl acetate $\left(7.2 \mathrm{~cm}^{3}, 73.7 \mathrm{mmol}\right)$ was added over a period of 20 min . After 1.5 h , the crude 2-(trimethylsilyl)-3furoyl chloride was added as a solution in THF ($50 \mathrm{~cm}^{3}$) over a period of 30 min . After a further 30 min , saturated aq. ammonium chloride was added, and the mixture was allowed to warm to room temperature. Hydrochloric acid ($100 \mathrm{~cm}^{3} ; 3 \mathrm{~mol}$ dm^{-3}) was added, and the organic products were extracted into ether. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was distilled to give the title compound $31(18.6,100 \%)$ as a liquid, b.p. $110^{\circ} \mathrm{C}(0.5 \mathrm{mmHg})$ (Found: C, 57.3; H, 6.4. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}$ Si requires C, 57.1; H, 6.4\%); $v_{\text {max }} / \mathrm{cm}^{-1} 3120,1740,1680,1630,1545,1280,1250,1210,1145$, 1040, 920,850 and $770 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) (keto tautomer) $0.33\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right.$), $1.26\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}, \mathrm{CH}_{2} \mathrm{Me}\right), 3.76\left(2 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}_{2}\right)$, $4.21\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 6.66\left(1 \mathrm{H}, \mathrm{d}, J 2,4^{\prime}-\mathrm{H}\right)$ and $7.60(1 \mathrm{H}$, d, $\left.J 2,5^{\prime}-\mathrm{H}\right) ; m / z(\mathrm{EI}) 254\left(\mathrm{M}^{+}, 8 \%\right), 238(92)$ and 167 (100). Minor peaks due to the enol tautomer ($\sim 10 \%$) were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum; $\delta_{\mathrm{H}} 5.35(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$.
(1RS,2SR,5SR)-Ethyl 2-Hydroxy-5-methyl-4-oxo-2-(2'-tri-methylsilyl-3'-furyl) cy clohexanecarboxylate 33.-A solution of 3-methylbut-3-en-2-one ${ }^{11}(8 \mathrm{~g}, 95 \mathrm{mmol})$ in ethanol $\left(50 \mathrm{~cm}^{3}\right)$ was added to a solution of the keto ester $31(18.8 \mathrm{~g}, 74 \mathrm{mmol})$ in ethanol ($150 \mathrm{~cm}^{3}$) containing aq. sodium hydroxide ($3 \mathrm{~cm}^{3} ; 2$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$) over a period of 1 h . After 24 h , the mixture was concentrated under reduced pressure, and the residue was partitioned between ether $\left(400 \mathrm{~cm}^{3}\right)$ and brine ($100 \mathrm{~cm}^{3}$). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to leave a residue, which was recrystallised from hexane-ether to give the title compound $33(8.6 \mathrm{~g}, 34 \%)$ as plates, m.p. 119-121 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 60.55 ; \mathrm{H}, 7.75 . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 60.35 ; \mathrm{H}, 7.75 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.32(9 \mathrm{H}, \mathrm{s}$, SiMe_{3}), 1.11-1.16(6 H, m), 2.11(1 H, q, J13, 6-H $\left.{ }^{\mathrm{ax}}\right)$, 2.16-2.25(1 $\mathrm{H}, \mathrm{m}), 2.45-2.54(2 \mathrm{H}, \mathrm{m}), 2.64\left(1 \mathrm{H}, \mathrm{d}, J 14.5,3-\mathrm{H}^{\mathrm{eq}}\right), 3.32(1 \mathrm{H}$, dd, $J 12.5$ and $4,1-\mathrm{H}), 4.01-4.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.37(1 \mathrm{H}, \mathrm{d}, J$ $2.5, \mathrm{OH}), 6.26\left(1 \mathrm{H}, \mathrm{d}, J 1.5,4^{\prime}-\mathrm{H}\right)$ and $7.53\left(1 \mathrm{H}, \mathrm{d}, J 1.5,5^{\prime}-\mathrm{H}\right)$; $m / z(\mathrm{EI}) 338\left(\mathrm{M}^{+}, 6 \%\right), 323\left(\mathrm{M}^{+}-15,60 \%\right)$ and $167(100)$.

The mother liquors were concentrated under reduced pressure, and the residue was dissolved in ethanol $\left(100 \mathrm{~cm}^{3}\right)$. Aq. sodium hydroxide ($2 \mathrm{~cm}^{3} ; 2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) was added. After 8 h , the reaction mixture was worked up as outlined above to give a second crop of the cyclohexanecarboxylate $33(3.6 \mathrm{~g}, 14 \%)$. The residue was chromatographed (ether-light petroleum) to give a third crop ($4.2 \mathrm{~g}, 17 \%$) (total yield of $33 ; 16.4 \mathrm{~g}, 66 \%$).
(1RS,2SR,4SR,5SR)-Ethyl 2,4-Dihydroxy-5-methyl-2-(2'-tri-methylsilyl-3'-furyl) cyclohexanecarboxylate 34.-Sodium borohydride ($0.72 \mathrm{~g}, 20 \mathrm{mmol}$) was added to rapidly stirred acetic acid $\left(20 \mathrm{~cm}^{3}\right)$ at such a rate that the temperature did not exceed $20^{\circ} \mathrm{C}$. After 30 min , the solution was added to the ketone 33 (3.4 $\mathrm{g}, 10 \mathrm{mmol})$, and the mixture was stirred for 3 h . The excess of acetic acid was removed under reduced pressure, and the residue was partitioned between ether $\left(150 \mathrm{~cm}^{3}\right)$ and aq. sodium hydroxide ($100 \mathrm{~cm}^{3} ; 2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$). The organic phase was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and concentrated under reduced pressure, and the residue was recrystallised from hexane-ether to give the title compound $34(2.7 \mathrm{~g}, 78 \%)$ as needles, m.p. $102-103{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 60.15 ; \mathrm{H}, 8.05 . \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 59.95 ; \mathrm{H}, 8.3 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3600,3460,1700,1250,1180,1090$ and 1030 ; $\delta_{\mathbf{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.32\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.10(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{CH}_{2} \mathrm{Me}$), $1.11(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}), 1.4-1.6(3 \mathrm{H}, \mathrm{m}), 1.6-1.8$ $(2 \mathrm{H}, \mathrm{m}), 2.18\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.4.5,3-\mathrm{H}^{\mathrm{eq}}\right), 2.84(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $3.71(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.9-4.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.43(1 \mathrm{H}, \mathrm{d}, J 2.5$, $2-\mathrm{OH}), 6.18\left(1 \mathrm{H}, \mathrm{d}, J 1.5,4^{\prime}-\mathrm{H}\right)$ and $7.49\left(1 \mathrm{H}, \mathrm{d}, J 1.5,5^{\prime}-\mathrm{H}\right) ; m / z$ (EI) $340\left(\mathrm{M}^{+}, 11 \%\right)$ and 75 (100).

Oxidation of the 2-Trimethylsilylfuran 34.-With peracetic acid. A solution of the 2-trimethylsilylfuran $34(100 \mathrm{mg}, 0.29$ mmol), sodium acetate (100 mg) and peracetic acid ($200 \mathrm{~mm}^{3}$; 38% in acetic acid) in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ was heated under reflux for 16 h . The reaction mixture was diluted with dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$, washed with aq. sodium hydrogen carbonate $\left(2 \times 10 \mathrm{~cm}^{3} ; 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. Chromatography (etherethyl acetate) gave unchanged furan $34(53 \mathrm{mg}, 53 \%$ recovery) and (1RS,2SR,4SR,5SR)-ethyl 2-(2',5'-dihydro-2'-oxo-3'-fur-yl)-2,4-dihydroxy-5-methylcyclohexanecarboxylate 35 (14 mg , 14%) as needles on recrystallisation from ether, m.p. 132$133{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 59.1 ; \mathrm{H}, 6.9 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $\mathrm{C}, 59.15 ; \mathrm{H}$, $7.1 \%) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3620,3480,3020,1750,1700,1190$, 1090,1060 and $1035 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.1(3 \mathrm{H}, \mathrm{d}, J 6$, CHMe), $1.21\left(3 \mathrm{H}, \mathrm{t} J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 1.64-1.73(3 \mathrm{H}, \mathrm{m}), 1.85-1.95$ $(3 \mathrm{H}, \mathrm{m}), 3.36(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and $4,1-\mathrm{H}), 3.65(1 \mathrm{H}, \mathrm{br}$ q, $J 8,4-$ H), $4.0-4.1\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.55(1 \mathrm{H}$, br s, $2-\mathrm{OH}), 4.78(2 \mathrm{H}$, $\mathrm{m}, 5^{\prime}-\mathrm{H}_{2}$) and $7.49\left(1 \mathrm{H}\right.$, narrow $\left.\mathrm{m}, 4^{\prime}-\mathrm{H}\right) ; m / z(\mathrm{CI}) 302\left(\mathrm{M}^{+}+\right.$ $18,37 \%)$ and $285\left(\mathrm{M}^{+}+1,100\right)$.

With bromine in methanol. A solution of bromine $(1.8 \mathrm{~g}$, $11 \mathrm{mmol})$ in methanol $\left(10 \mathrm{~cm}^{3}\right)$ was added to a solution of the furan $34(3.4 \mathrm{~g}, 10 \mathrm{mmol})$ and sodium acetate $(3 \mathrm{~g}, 37 \mathrm{mmol})$ in methanol $\left(50 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ over a period of 30 min . The reaction mixture was then concentrated under reduced pressure and partitioned between ether ($150 \mathrm{~cm}^{3}$) and saturated aq. sodium hydrogen carbonate ($50 \mathrm{~cm}^{3}$). The organic phase was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and concentrated under reduced pressure. The residue was dissolved in THF ($100 \mathrm{~cm}^{3}$), and hydrochloric acid ($30 \mathrm{~cm}^{3} ; 3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) was added. After 30 min , sodium chloride (5 g) was added, and the mixture was extracted with ether. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed to give the butenolide 35 ($1.54 \mathrm{~g}, 54 \%$) and (1RS,2SR,4SR,5SR)ethyl 2-(2-bromo-3-furyl)-2,4-dihydroxy-5-methylcyclohexanecarboxylate $36(1.07 \mathrm{~g}, 31 \%)$ as needles after recrystallisation from ether-hexane, m.p. $95-97^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 48.3 ; \mathrm{H}, 5.6$. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}_{5}$ requires $\mathrm{C}, 48.45 ; \mathrm{H}, 5.5 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3610,3460,1700,1375,1185,1160$ and $1030 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.1-1.2(6 \mathrm{H}, \mathrm{m}), 1.47-1.63(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.67-1.92(4 \mathrm{H}$, $\mathrm{m}), 2.19\left(1 \mathrm{H}\right.$, dd, $J 13$ and $\left.5,3-\mathrm{H}^{\mathrm{eq}}\right), 3.15(1 \mathrm{H}, \mathrm{dd}, J 11$ and 4 , $1-\mathrm{H}), 3.7(1 \mathrm{H}, \mathrm{td}, J 10,5,4-\mathrm{H}), 4.0-4.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.51$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), $6.45\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right)$ and $7.35\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right) ; m / z$ (EI) $331\left(\mathrm{M}^{+}-16,25 \%\right)$ and 249 (100).
(1RS,2SR,4SR,5SR)-Ethyl 2-[(Z)-2'-Formyl-1'-(methoxycar-bonyl)ethenyl]-2,4-dihydroxy-5-methylcyclohexanecarboxylate
37.-A solution of bromine ($180 \mathrm{mg}, 1.1 \mathrm{mmol}$) in methanol (11 cm^{3}) was added to a solution of the bromofuran $36(347 \mathrm{mg}, 1$ mmol) and sodium acetate ($250 \mathrm{mg}, 3 \mathrm{mmol}$) in methanol (15 cm^{3}) at $0^{\circ} \mathrm{C}$ over a period of 15 min . The reaction mixture was then concentrated under reduced pressure, and partitioned between dichloromethane ($40 \mathrm{~cm}^{3}$) and brine ($20 \mathrm{~cm}^{3}$). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure, and the residue was dissolved in aq. acetone ($3.6 \mathrm{~cm}^{3} ; 3: 1$ acetone-water). Trifluoroacetic acid (TFA) (10 mm^{3}) was added and, after 3 h , the solution was concentrated under reduced pressure. Chromatography of the residue (etherlight petroleum) gave the title compound $37(212 \mathrm{mg}, 68 \%$) as an oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3680,3610,3460,1730,1690,1190,1115$ and $1040 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.08(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}), 1.24$ ($3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}$), $1.44-1.51(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.61(1 \mathrm{H}$, ddd, J $13.5,11$ and $\left.1.5,3-\mathrm{H}^{\mathrm{ax}}\right), 1.75\left(1 \mathrm{H}, \mathrm{q}, J 12.5,6-\mathrm{H}^{\mathrm{ax}}\right), 1.81(1 \mathrm{H}$, br s, $4-\mathrm{OH}), 1.89\left(1 \mathrm{H}, \mathrm{dt}, J 13\right.$ and $\left.4,6-\mathrm{H}^{\mathrm{eq}}\right), 2.15(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $\left.4.5,3-\mathrm{H}^{\text {eq }}\right), 2.82(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and $4,1-\mathrm{H}), 3.66(1 \mathrm{H}, \mathrm{td}, J 10.5$ and 4.5, 4-H), 3.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.09-4.21 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}$), $4.57(1 \mathrm{H}, \mathrm{d}, J 3,2-\mathrm{OH}), 6.42\left(1 \mathrm{H}, \mathrm{d}, J 7.5,2^{\prime}-\mathrm{H}\right)$ and $9.66(1 \mathrm{H}, \mathrm{d}$, $J 7.5, \mathrm{CHO}) ; m / z(\mathrm{CI}) 298\left(\mathrm{M}^{+}-16,100 \%\right)$.
(1RS,2SR,4SR,5SR)-Ethyl 2-[(Z)-2'-(1,3-Dioxan-2-yl)-1'-(methoxycarbonyl)ethenyl]-2,4-dihydroxy-5-methylcyclohexanecarboxylate 38.-A mixture of the aldehyde 37 ($450 \mathrm{mg}, 1.4$ mmol), propane-1,3-diol $\left(0.4 \mathrm{~cm}^{3}\right)$, and copper sulfate (500 mg) was stirred in benzene $\left(15 \mathrm{~cm}^{3}\right)$ for 16 h . The mixture was then filtered, and the filtrate was concentrated under reduced pressure. Chromatography of the residue gave the title compound 38 ($265 \mathrm{mg}, 50 \%$) as needles after recrystallisation from hexane-ether, m.p. $136-138^{\circ} \mathrm{C}$ (Found: C, 57.9; H, 7.6. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{8}$ requires $\left.\mathrm{C}, 58.05 ; \mathrm{H}, 7.6 \%\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.05(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}), 1.24\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 1.2-1.46$ $(1 \mathrm{H}, \mathrm{m}), 1.58-1.84(4 \mathrm{H}, \mathrm{m}), 2.00-2.16(2 \mathrm{H}, \mathrm{m}), 2.85(1 \mathrm{H}, \mathrm{dd}, J$ 12 and $5,1-\mathrm{H}), 3.61(1 \mathrm{H}, \mathrm{td}, J 10.5$ and $4.5,4-\mathrm{H}), 3.75(3 \mathrm{H}, \mathrm{s}$, OMe), 3.71-3.81 (2 H, m), 4.04-4.2 (4 H, m), 4.34 (1 H, d, J2.5, $2-\mathrm{OH}), 5.16\left(1 \mathrm{H}, \mathrm{d}, J 4.5,1^{\prime}-\mathrm{H}\right)$ and $5.99\left(1 \mathrm{H}, \mathrm{d}, J 4.5,2^{\prime}-\mathrm{H}\right)$.
(1RS,2SR,4SR,5SR)-Ethyl 2-(2',5'-Dihydro-5'-hydroxy-2'-oxo-3'-furyl)-2-hydroxy-4-methoxy-5-methylcyclohexanecarboxylate $\mathbf{4 0}$.-A mixture of the butenolide $25(528 \mathrm{mg}, 1.77$ $\mathrm{mmol})$ and NBS $(410 \mathrm{mg}, 2.3 \mathrm{mmol})$ in tetrachloromethane (15 cm^{3}) was heated under reflux for 4 h in the presence of light. The reaction mixture was cooled and filtered, and the filtrate was concentrated under reduced pressure to leave the bromobutenolide 39 (692 mg) which was used without purification.

The bromobutenolide $39(692 \mathrm{mg})$ was heated under reflux in aq. acetone ($16 \mathrm{~cm}^{3} ; 3: 1$ acetone-water) for 6 h . Brine ($20 \mathrm{~cm}^{3}$) and ether ($40 \mathrm{~cm}^{3}$) were added, and the organic phase was separated. The aqueous phase was extracted with ether (3×20 cm^{3}), and the combined ethereal phases were dried (MgSO_{4}), and concentrated under reduced pressure. The residue was chromatographed (ether-ethyl acetate) to give the title compound $40(415 \mathrm{mg}, 75 \%)$ as needles after recrystallisation from ether, m.p. $149-151^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 57.25 ; \mathrm{H}, 6.95 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{7}$ requires $\mathrm{C}, 57.3 ; \mathrm{H}, 7.0 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3580,3400 \mathrm{br}, 1770$, $1700,1185,1100,1015$ and $925 ; \delta_{\mathbf{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.06(3 \mathrm{H}$, $\mathrm{d}, J 6, \mathrm{CHMe}), 1.21\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} M e\right), 1.57-1.77(3 \mathrm{H}, \mathrm{m}), 1.87$ $\left(1 \mathrm{H}, \mathrm{dt}, J 12.5,4,6-\mathrm{H}^{\mathrm{eq}}\right), 2.09\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.4,3-\mathrm{H}^{\mathrm{eq}}\right), 3.19$ ($1 \mathrm{H}, \mathrm{td}, J 10.5$ and $4.5,4-\mathrm{H}), 3.29(1 \mathrm{H}$, dd, $J 12$ and $3.5,1-\mathrm{H}$), 3.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.03-4.14 (2 H, m, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 4.4-4.5(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{OH}), 4.8-5.0(1 \mathrm{H}$, br s, OH$), 6.06\left(1 \mathrm{H}\right.$, br s, $\left.5^{\prime}-\mathrm{H}\right)$ and 7.18 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4^{\prime}-\mathrm{H}$); m / z (EI) $296\left(\mathrm{M}^{+}-18,9 \%\right.$) and 99 (100).

Reactions of Hydroxybutenolide 40 with Nucleophiles.-With butyllithium. Butyllithium ($0.8 \mathrm{~cm}^{3} ; 1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane) was added to a stirred solution of the hydroxybutenolide $40(152 \mathrm{mg}$, $0.48 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After 2 h , hydrochloric
acid ($10 \mathrm{~cm}^{3} ; 1 \mathrm{~mol} \mathrm{dm}^{-3}$) was added. Extraction (ether) followed by chromatography (ether-light petroleum) gave ($1 R S, 2 S R, 4 S R, 5 S R$)-ethyl 2-(5^{\prime}-butyl-2', 5^{\prime}-dihydro- 2^{\prime}-oxo- 3^{\prime} -furyl)-2-hydroxy-4-methoxy-5-methylcyclohexanecarboxylate 42 ($107 \mathrm{mg}, 63 \%$) as two diastereoisomers, ratio 60:40; major diastereoisomer, $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3460,1750,1700,1190$, 1100 and $1030 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.91(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $106(3 \mathrm{H}, \mathrm{d}, J \mathrm{CHMe}), 1.20(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 1.23-1.45(5 \mathrm{H}, \mathrm{m}), 1.58-1.89(5 \mathrm{H}, \mathrm{m}), 2.04(1 \mathrm{H}, \mathrm{dd}$, $J 13$ and $\left.4.5,3-\mathrm{H}^{\mathrm{eq}}\right), 3.19(1 \mathrm{H}, \mathrm{td}, J 10.5$ and $4.5,4-\mathrm{H}), 3.33(1 \mathrm{H}$, dd, $J 12.5$ and 4.1, 1-H), 3.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.01-4.12 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 4.54(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{OH}), 4.87(1 \mathrm{H}, \mathrm{ddd}, J 7,5.5$ and $\left.1.5,5^{\prime}-\mathrm{H}\right)$ and $7.38\left(1 \mathrm{H}, \mathrm{d}, J 1.5,4^{\prime}-\mathrm{H}\right) ; m / z(\mathrm{EI}) 336\left(\mathrm{M}^{+}-18\right.$, 10%) and 85 (100); minor diastereoisomer, $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3440,1750,1690,1335,1100$ and 1040; $\delta_{\mathbf{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.90\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{CHMe}), 1.22(3 \mathrm{H}$, $\mathrm{t}, J 7, \mathrm{OCH} M e$), 1.24-1.39 and 1.56-1.90 (each $5 \mathrm{H}, \mathrm{m}$), 2.05 (1 H , dd, $J 13$ and $4.5,3-\mathrm{H}^{\text {eq }}$), $3.19(1 \mathrm{H}$, td, $J 10.5$ and $4.5,4-\mathrm{H}$), 3.33 ($1 \mathrm{H}, \mathrm{dd}, J 12.5$ and $4,1-\mathrm{H}$), 3.34 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.98-4.14$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.57(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{OH}), 4.93(1 \mathrm{H}$, ddd, $J 7$, 5 and $1.5,5^{\prime}-\mathrm{H}$) and 7.35 ($1 \mathrm{H}, \mathrm{d}, J 1.5,4^{\prime}-\mathrm{H}$); m / z (EI) $336\left(\mathrm{M}^{+}\right.$ $-18,10 \%$) and $85(100)$.
With lithiated ethyl phenyl sulfone. Butyllithium ($0.65 \mathrm{~cm}^{3} ; 1.6$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$ in hexane) was added to a solution of ethyl phenyl sulfone ($170 \mathrm{mg}, 1 \mathrm{mmol}$) in THF ($4 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. After 30 min , this solution was added to a solution of hydroxybutenolide $\mathbf{4 0}$ ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After 45 min at $-78^{\circ} \mathrm{C}$ and 45 min at ambient temperature, the mixture was diluted with ether ($30 \mathrm{~cm}^{3}$), washed with dil. hydrochloric acid ($20 \mathrm{~cm}^{3} ; 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed (etherlight petroleum, 2:1) to give two fractions, each of which contained two diastereoisomers of the sulfonylethyl lactone 43 (combined yield $63 \mathrm{mg}, 46 \%$); major fraction $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3480,1760 and $1720 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.5\left(0.3 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right)$, $5.5\left(0.7 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 7.4\left(0.7 \mathrm{H}, \mathrm{d}, J 1.5,4^{\prime}-\mathrm{H}\right), 7.5(0.3 \mathrm{H}, \mathrm{d}$, $\left.J \quad 1.5,4^{\prime}-\mathrm{H}\right)$ and $7.55-8.0(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; minor fraction, $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3480,1760$ and $1720 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $5.42\left(0.8 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 5.44\left(0.2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right)$ and $7.55-7.95(6 \mathrm{H}, \mathrm{m})$.
(1RS,2SR,4SR,5SR)-Ethyl 2-[(1'Z,3'EZ)-1'-Carboxypenta$1^{\prime}, 3^{\prime}$-dienyl)]-2-hydroxy-4-methoxy-5-methylcyclohexanecarboxylate 45.-LDA ($1.5 \mathrm{~cm}^{3} ; 0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF) was added to a solution of the hydroxybutenolide $\mathbf{4 0}(77 \mathrm{mg}, 0.25 \mathrm{mmol})$ in THF ($3 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$, followed by triphenylphosphonium ethylide [from ethyltriphenylphosphonium iodide ($139 \mathrm{mg}, 0.33$ mmol) and $200 \mu \mathrm{l}$ of $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ butyllithium ($200 \mathrm{~mm}^{3}$)] in THF ($2 \mathrm{~cm}^{3}$). The reaction mixture was allowed to warm to room temperature over a period of 1 h , and saturated aq. ammonium chloride ($3 \mathrm{~cm}^{3}$) was added. The mixture was extracted into ether, and the extracts were dried (MgSO_{4}), and concentrated under reduced pressure. Chromatography (etherlight petroleum-acetic acid, $50: 50: 1$) gave the title compound $45(67 \mathrm{mg}, 82 \%)$ as a $2: 1$ mixture of $\left(3^{\prime} Z\right)$ and ($\left.3^{\prime} E\right)$ isomers; $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3420,1695,1370,1185$ and 1080; $\delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 1.02-1.07 (3 H , overlapping d, $J 7, \mathrm{CHMe}$), 1.2 (3 H , overlapping t, $\left.J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 1.48-2.00(4 \mathrm{H}, \mathrm{m}), 1.82(3 \mathrm{H}$, overlapping d, $\left.J 6,5^{\prime}-\mathrm{H}_{3}\right), 2.23\left(0.3 \mathrm{H}\right.$, dd, $J 13$ and $5,3-\mathrm{H}^{\mathrm{eq}}$), $2.28\left(0.7 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.5,3-\mathrm{H}^{\mathrm{eq}}\right), 3.13-3.3(2 \mathrm{H}, \mathrm{m}), 3.5(1 \mathrm{H}, \mathrm{s}$, OMe), 3.51 ($2 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.05-4.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}_{2} \mathrm{Me}$), 4.69 $(0.3 \mathrm{H}$, br s, 2-OH), $4.75(0.7 \mathrm{H}, \mathrm{br}$ s, 2-OH), $5.92(0.7 \mathrm{H}$, dqd, J $10.5,7$ and $\left.1,4^{\prime}-\mathrm{H}\right), 6.07\left(0.3 \mathrm{H}, \mathrm{dq}, J 14\right.$ and $\left.7,4^{\prime}-\mathrm{H}\right), 6.66(0.7 \mathrm{H}$, $\left.\mathrm{tq}, J 11.5 \mathrm{and} 1.5,3^{\prime}-\mathrm{H}\right), 6.75-6.9(0.6 \mathrm{H}, \mathrm{m})$ and $7.10(0.7 \mathrm{H}, \mathrm{dd}, J$ 11.5 and $\left.0.5,2^{-}-\mathrm{H}\right) ; m / z(\mathrm{CI}) 344\left(\mathrm{M}^{+}+18,17 \%\right), 326\left(\mathrm{M}^{+}, 36\right)$ and $309\left(\mathrm{M}^{+}-17,100\right)$.
Treatment of the crude acid 45 [prepared from the hydroxybutenolide 40 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$)] with an excess of diazomethane gave, after chromatography (ether-light petroleum),
the methyl esters 46 ($50 \mathrm{mg}, 46 \%$) as an inseparable ($3: 1$) mixture of $\left(3^{\prime} Z\right)$ and $\left(3^{\prime} E\right)$ isomers; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450,1725,1680$, 1638,1220 and $1115 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ major isomer, $5.77(1$ H, dqd, $J 11,6$ and $1,4^{\prime}-\mathrm{H}$), 6.21 (1 H, ddq, 12,11 and $1.5,3^{\prime}-\mathrm{H}$) and $6.99\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $\left.1,2^{\prime}-\mathrm{H}\right)$; minor isomer, $5.97(1 \mathrm{H}, \mathrm{dq}$, $J 15$ and $\left.6.5,4^{\prime}-\mathrm{H}\right), 6.36\left(1 \mathrm{H}, \mathrm{ddq}, J 15,11.5\right.$ and $1.5,3^{\prime}-\mathrm{H}$) and $6.68\left(1 \mathrm{H}, \mathrm{d}, J 11,2^{\prime}-\mathrm{H}\right) ; m / z(\mathrm{EI}) 340\left(\mathrm{M}^{+}, 3.5 \%\right)$ and 211 (100).
(1RS,2SR,4SR,5SR)-Ethyl 2-[(1'Z, $\left.3^{\prime} \mathrm{E}\right)-1^{\prime}$-Carboxy-5'-methylhexa-1',3'-dienyl]-2-hydroxy-4-methoxy-5-methylcyclohexanecarboxylate 51.-Following the procedure outlined above, hydroxybutenolide 40 ($77 \mathrm{mg}, 0.25 \mathrm{mmol}$) and triphenylphosphonium 2-methylpropylide [from 2-methylpropyltriphenylphosphonium bromide ($132 \mathrm{mg}, 0.33 \mathrm{mmol}$)] gave a 4:1 mixture of the $\left(3^{\prime} Z\right)$ and $\left(3^{\prime} E\right)$ isomers of the dienyl acids 47 ($67 \mathrm{mg}, 75 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3440,2400-3600 \mathrm{br}, 1700$, $1620,1180,1090,1030$ and $910 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ major isomer, $1.01\left(6 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}_{2}\right), 1.06(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CHMe})$, $1.22\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 1.5-1.8(4 \mathrm{H}, \mathrm{m}), 2.26(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 4.5), 2.85-2.94 ($\left.1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.16-3.3(2 \mathrm{H}, \mathrm{m}), 3.38(3 \mathrm{H}$, s , OMe), $4.05-4.18$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}$), $5.0(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.61$ $\left(1 \mathrm{H}, \mathrm{td}, J 10.5\right.$ and $\left.0.5,4^{\prime}-\mathrm{H}\right), 6.48\left(1 \mathrm{H}, \mathrm{td}, J 11.5\right.$ and $\left.0.5,3^{\prime}-\mathrm{H}\right)$ and $7.08\left(1 \mathrm{H}\right.$, dd, $J 11.5$ and $\left.0.5,2^{\prime}-\mathrm{H}\right)$; minor isomer, $6.03(1 \mathrm{H}$, dd, $J 14.5$ and $7,4^{\prime}-\mathrm{H}$) and $6.75-6.84\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}\right.$ - and $\left.3^{\prime}-\mathrm{H}\right)$.
Treatment of a sample of the dienyl acids 47 with an excess of diazomethane gave the methyl esters $48(56 \%), \nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right)$ 3450, 1710, 1380, 1180 and 1090; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ major isomer, $5.49\left(1 \mathrm{H}, \mathrm{t}, J 11,4^{\prime}-\mathrm{H}\right), 6.07\left(1 \mathrm{H}, \mathrm{t}, J 11,3^{\prime}-\mathrm{H}\right)$ and 6.94 $\left(1 \mathrm{H}, \mathrm{d}, J 11,2^{\prime}-\mathrm{H}\right)$; minor isomer, $5.91\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $7,4^{\prime}-$ H), $6.31\left(1 \mathrm{H}, \mathrm{ddd}, J 15,11\right.$ and $\left.1.5,3^{\prime}-\mathrm{H}\right)$ and $6.68(1 \mathrm{H}, \mathrm{d}, J 11$, $\left.2^{\prime}-\mathrm{H}\right) ; m / z(\mathrm{EI}) 368\left(\mathrm{M}^{+}, 7 \%\right)$ and 239 (100).
Iodine ($5 \mathrm{~mol} \%$) was added to a solution of the dienyl acids 47 in benzene. After 24 h the solution was diluted with more benzene, washed with saturated aq. sodium thiosulfate, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was recrystallised from dichloromethane-ether to give the title compound 51 as fine needles, m.p. $118-120{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 64.35 ; \mathrm{H}, 8.7 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{6}$ requires $\mathrm{C}, 64.4 ; \mathrm{H}, 8.55 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450,1700,1620,1460,1380,1180,1125$ and 1010; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.82(6 \mathrm{H}$, overlapping d, $J 7$, CHMe_{2}), 0.90 ($3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}$), 1.02 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}$), 1.45-1.65 ($2 \mathrm{H}, \mathrm{m}$), $1.82\left(1 \mathrm{H}, \mathrm{q}, J 12.5,6-\mathrm{H}^{\mathrm{eq}}\right), 2.09-2.17(2 \mathrm{H}$, $\mathrm{m}), 2.39\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.4.5,3-\mathrm{H}^{\mathrm{eq}}\right), 3.16(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.38$ ($1 \mathrm{H}, \mathrm{td}, J 10$ and $4.5,4-\mathrm{H}$), 3.53 (1 H , dd, $J 12.5$ and $4,1-\mathrm{H}$), 3.75-3.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{C}_{2} \mathrm{Me}$), 5.76 ($1 \mathrm{H}, \mathrm{dd}, J 15$ and $7,4^{\prime}-\mathrm{H}$), 7.04 ($1 \mathrm{H}, \mathrm{dd}, J 15$ and $11.5,3^{\prime}-\mathrm{H}$) and $7.23\left(1 \mathrm{H}, \mathrm{d}, J 11.5,2^{\prime}-\mathrm{H}\right)$; m / z (CI) $372\left(\mathrm{M}^{+}+18,8 \%\right)$ and 296 (100).
(1RS,2SR,4SR,5SR)-Ethyl 2-(2',5'-Dihydro-5'-methoxycar-bonylmethyl-2'-oxo-3'-furyl)-2-hydroxy-4-methoxy-5-methylcyclohexanecarboxylate 50 .-A solution of the hydroxybutenolide 40 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) and methoxycarbonylmethylenetriphenylphosphorane ($330 \mathrm{mg}, 1 \mathrm{mmol}$) in THF ($10 \mathrm{~cm}^{3}$) was heated under reflux for 3 h . The mixture was concentrated under reduced pressure, and the residue was chromatographed to give the title compound $\mathbf{5 0}(\mathbf{7 4 \mathrm { mg } , 6 3 \%) \text { as a } 1 : 1 \text { mixture of }}$ diastereoisomers; $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3460,1750,1705,1280,1180$, 1100 and $1040 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.05$ ($3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CHMe}$), $1.19\left(1.5 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 1.22\left(1.5 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 1.58-$ $1.90(4 \mathrm{H}, \mathrm{m}), 2.05\left(1 \mathrm{H}, \mathrm{dt}, J 13\right.$ and $\left.4.5,6-\mathrm{H}^{\mathrm{eq}}\right), 2.53-2.85(2 \mathrm{H}$, $\mathrm{m})$, $3.18(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.27-3.36(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.33(3 \mathrm{H}, \mathrm{s}$, OMe), 3.72 and 3.73 (each $\left.1.5 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.02-4.15(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{Me}$), 4.52 and 4.54 (each $0.5 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{OH}$), 5.22-5.30 ($1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$) and 7.47 and 7.49 (each $0.5 \mathrm{H}, \mathrm{d}, J 1.5,4^{\prime}-\mathrm{H}$); m/z (EI) $370\left(\mathrm{M}^{+}, 1 \%\right)$ and $169(100)$.
(1'RS,3'SR)-2-[3-tert-Butyldimethylsiloxy)cyclohexyl]ethanal 56.-A solution of the bicyclic lactone $53{ }^{23}(14 \mathrm{~g}, 100$
mmol) and sodium methoxide ($1 \mathrm{~g}, 19 \mathrm{mmol}$) in methanol (250 cm^{3}) was stirred for 2 h and then concentrated under reduced pressure. The residue was taken up in ether $\left(500 \mathrm{~cm}^{3}\right)$, and the extracts were washed with brine $\left(2 \times 250 \mathrm{~cm}^{3}\right)$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Concentration under reduced pressure gave the methyl ester $54(14.5 \mathrm{~g})$ used without purification; $v_{\text {max }} / \mathrm{cm}^{-1}$ 3480 and $1725 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.77-1.03(2 \mathrm{H}, \mathrm{m}), 1.06-$ $1.39(2 \mathrm{H}, \mathrm{m}), 1.58-2.13(5 \mathrm{H}, \mathrm{m}), 2.2-2.3(2 \mathrm{H}, \mathrm{m}), 2.55-2.78$ ($1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}$), 3.52-3.64 (1 H, m, $\left.3^{\prime}-\mathrm{H}\right)$, and $3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$; $m / z(\mathrm{CI}) 173\left(\mathrm{M}^{+}+1,2 \%\right)$ and 141 (100).

A solution of the crude methyl ester 54 (14.5 g), tertbutyldimethylsilyl chloride ($16.4 \mathrm{~g}, 109 \mathrm{mmol}$), and imidazole $\left(15 \mathrm{~g}, 221 \mathrm{mmol}\right.$) in N, N-dimethylformamide (DMF) ($40 \mathrm{~cm}^{3}$) was stirred at ambient temperature for 48 h . The mixture was partitioned between light petroleum ($500 \mathrm{~cm}^{3}$) and water (500 cm^{3}), and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed (ether-light petroleum) to give the silyl ester $55(17.5 \mathrm{~g}$, 61% from 53) as an oil; $v_{\max } / \mathrm{cm}^{-1} 1740,1255,1170,1100,1053$, 840 and $780 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.88$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}$), $1.01\left(1 \mathrm{H}, \mathrm{q}, J 11.5,2^{\prime}-\mathrm{H}\right), 1.1-1.3(2 \mathrm{H}, \mathrm{m})$, $1.56-1.95(6 \mathrm{H}, \mathrm{m}), 2.23\left(2 \mathrm{H}, \mathrm{d}, J 7,2-\mathrm{H}_{2}\right), 3.5-3.6\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$ and $3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; m / z(\mathrm{EI}) 229\left(\mathrm{M}^{+}, 93 \%\right)$ and 75 (100).

DIBAL-H $\left(9 \mathrm{~cm}^{3} ; 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in toluene) was added to a solution of the methyl ester $55(2.34 \mathrm{~g}, 9.2 \mathrm{mmol})$ in toluene $\left(50 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After 2 h , saturated aq. ammonium chloride ($10 \mathrm{~cm}^{3}$) was added, and the mixture was allowed to warm to room temperature. Hydrochloric acid ($10 \mathrm{~cm}^{3} ; 3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) was added, and the organic phase was separated. The aqueous phase was extracted with ether ($3 \times 20 \mathrm{~cm}^{3}$), and the combined organic phases were dried ($\mathbf{M g S O}_{4}$), and concentrated under reduced pressure. Chromatography (light petroleum-ether, 19:1) of the residue gave the title compound $56(1.7 \mathrm{~g}, 81 \%)$, which was further purified by Kugelrohr distillation (oven temperature $140^{\circ} \mathrm{C} ; 0.5 \mathrm{mmHg}$) (Found: $\mathrm{M}-57,199.1150$. $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{Si}$ requires $\left.m / z, 199.1154\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 2710,1725$, $1255,1105,1060,830$ and $775 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.06(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiMe}_{2}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 1.09\left(1 \mathrm{H}, \mathrm{q}, J 11,2^{\prime}-\mathrm{H}^{\mathrm{ax}}\right)$, 1.16-1.32 (2 H, m), 1.6-1.94 (6 H, m), $2.35\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 3.55-$ $3.68\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$ and $9.77(1 \mathrm{H}, \mathrm{t}, J 2,1-\mathrm{H}) ; m / z(\mathrm{CI}) 257$ $\left(\mathbf{M}^{+}+1,100 \%\right)$.
(1'RS,3'RS,4E)-6-[3'-(tert-Butyldimethylsiloxy)cyclohexyl]-4-methylhex-4-en-1-ol 59.-A solution of the aldehyde 56 (8 g , $31 \mathrm{mmol})$ in THF $\left(40 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of prop-2-en-2-ylmagnesium bromide in THF ($40 \mathrm{~cm}^{3} ; 1 \mathrm{~mol}$ dm^{-3}) at $0^{\circ} \mathrm{C}$. After 20 min , saturated aq. ammonium chloride ($50 \mathrm{~cm}^{3}$) was added, and the organic phase was separated. The aqueous phase was washed with ether ($3 \times 50 \mathrm{~cm}^{3}$), and the combined organic phases dried $\left(\mathbf{M g S O}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed (ether-light petroleum) to give the alcohol $57(8.2 \mathrm{~g}, 87 \%$) as a mixture of diastereoisomers, which was further purified by Kugelrohr distillation, oven temperature $160^{\circ} \mathrm{C}(0.5 \mathrm{mmHg})$; $v_{\text {max }} / \mathrm{cm}^{1} 3360,1645,1255,1105,1070,835$ and $775 ; \delta_{\mathbf{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.05$ and 0.06 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}\right), 0.89(9 \mathrm{H}, \mathrm{s}$, SiCMe_{3}), $1.73(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 0.8-2.0(12 \mathrm{H}, \mathrm{m}), 3.45-3.64(1 \mathrm{H}$, $\left.\mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.17(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, and 4.83 and $4.95($ each $1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$; $m / z(\mathrm{CI}) 299\left(\mathrm{M}^{+}+1,26 \%\right)$ and 149 (100).

A solution of the alcohol $57(8 \mathrm{~g}, 26.8 \mathrm{mmol})$, trimethyl orthoacetate $\left(15 \mathrm{~cm}^{3}\right)$, and propanoic acid $\left(0.3 \mathrm{~cm}^{3}\right)$ in commercial xylene ($60 \mathrm{~cm}^{3}$) was heated under reflux for 24 h . Concentration under reduced pressure gave the ester 58 , which was further purified by distillation using a Kugelrohr, oven temp. $200^{\circ} \mathrm{C}(0.5 \mathrm{mmHg})$ (Found: $\mathrm{C}, 67.4 ; \mathrm{H}, 11.05$. $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{3}$ Si requires $\left.\mathrm{C}, 67.75 ; \mathrm{H}, 10.8 \%\right) ; v_{\max } / \mathrm{cm}^{-1} 1740,1255$, 1100,835 and $775 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$, $0.63-0.85(1 \mathrm{H}, \mathrm{m}), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.92\left(1 \mathrm{H}, \mathrm{q}, J 12,2^{\prime}-\right.$
H), 1.05-1.38 (3 H, m), 1.51-1.77 (2 H, m), $1.6(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me})$, $1.76-1.95(2 \mathrm{H}, \mathrm{m}), 1.9\left(2 \mathrm{H}, \mathrm{t}, J 7,2-\mathrm{H}_{2}\right), 2.26-2.49(4 \mathrm{H}, \mathrm{m})$, 3.43-3.57 (1 H, m, 3'-H), $3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $5.17(1 \mathrm{H}, \mathrm{t}, J 7$, $5-\mathrm{H}) ; m / z(\mathrm{CI}) 355\left(\mathrm{M}^{+}+1,36 \%\right)$ and $223(100)$.

The ester 58, as a solution in ether ($50 \mathrm{~cm}^{3}$), was added slowly to a suspension of lithium aluminium hydride ($1 \mathrm{~g}, 26$ mmol) in ether $\left(50 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After 1 h , sodium sulfate decahydrate was added, the slurry was filtered and the residue was washed with ether. The combined filtrate and washings were dried (MgSO_{4}), and concentrated under reduced pressure. The residue was chromatographed (ether-light petroleum, 1:2) to give the title compound $59(7.02 \mathrm{~g}, 82 \%$ from 57$)$ as a viscous oil, which was distilled using a Kugelrohr, oven temp. $220^{\circ} \mathrm{C}$ (0.5 mmHg) (Found: $\mathrm{C}, 69.7 ; \mathrm{H}, 12.1 . \mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}$ required C , $69.9 ; \mathrm{H}, 11.75 \%$); $v_{\max } / \mathrm{cm}^{-1} 3330,1255,1095,1055,835$ and $775 ; \delta_{\mathbf{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.74-0.85(1 \mathrm{H}$, $\mathrm{m}), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.95\left(1 \mathrm{H}, \mathrm{q}, J 11.5,2^{\prime}-\mathrm{H}^{\mathrm{ax}}\right), 1.13-1.3$ $(3 \mathrm{H}, \mathrm{m}), 1.43(1 \mathrm{H}, \mathrm{br} s, \mathrm{OH}), 1.6(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}), 1.6-1.74(4 \mathrm{H}$, $\mathrm{m}), 1.82-1.87(2 \mathrm{H}, \mathrm{m}), 1.92\left(2 \mathrm{H}, \mathrm{t} J 7,3-\mathrm{H}_{2}\right), 2.07(2 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.6-\mathrm{H}_{2}\right), 3.48-3.54\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 3.64\left(2 \mathrm{H}, \mathrm{t}, J 6.5,2-\mathrm{H}_{2}\right)$ and $5.18(1 \mathrm{H}, \mathrm{t}, J 7.5,5-\mathrm{H}) ; m / z(\mathrm{CI}) 327\left(\mathrm{M}^{+}+1,7 \%\right)$ and 195 (100).
[(1'RS,3'RS,4E)-6-[3'-(tert-Butyldimethylsiloxy)cyclohexyl]-4-methylhex-4-enyl(triphenyl)phosphonium Iodide 62.-Methanesulfonyl chloride $\left(1.95 \mathrm{~cm}^{3}, 25 \mathrm{mmol}\right)$ was added to a solution of alcohol $59(6.66 \mathrm{~g}, 21 \mathrm{mmol})$ and triethylamine (3.7 $\mathrm{cm}^{3}, 34 \mathrm{mmol}$) in ether ($100 \mathrm{~cm}^{3}$). After 1 h , the mixture was filtered, and the filtrate was concentrated under reduced pressure to give the methanesulfonate 60 as an oil, used without further purification; $v_{\max } / \mathrm{cm}^{-1} 1250,1180,1090,1055,960,930$, 835 and $755 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.74$ $0.88(1 \mathrm{H}, \mathrm{m}), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.96\left(1 \mathrm{H}, \mathrm{q}, J 12,2^{\prime}-\mathrm{H}^{\mathrm{ax}}\right)$, 1.16-1.31 ($3 \mathrm{H}, \mathrm{m}$), $1.6(3 \mathrm{H}, \mathrm{d}, J 1.5,4-\mathrm{Me}), 1.6-1.63$ and 1.7 (each $1 \mathrm{H}, \mathrm{m}), 1.8-1.95(4 \mathrm{H}, \mathrm{m}), 1.92\left(2 \mathrm{H}, \mathrm{t}, J 7,3-\mathrm{H}_{2}\right), 2.11(2 \mathrm{H}$, $\left.\mathrm{t}, J 7.5,6-\mathrm{H}_{2}\right), 3.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OSO}_{2} \mathrm{Me}\right), 3.46-3.6\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$, $4.21\left(2 \mathrm{H}, \mathrm{t}, J 6.5,1-\mathrm{H}_{2}\right)$ and $5.19(1 \mathrm{H}, \mathrm{td}, J 7.5$ and $1.2,5-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (CI) $405\left(\mathrm{M}^{+}+1,100 \%\right)$.

The methanesulphonate 60 was dissolved in a solution of sodium iodide in acetone ($200 \mathrm{~cm}^{3} ; 10 \% \mathrm{w} / \mathrm{v}$). After 6 h , the mixture was diluted with light petroleum $\left(600 \mathrm{~cm}^{3}\right)$, filtered through Celite, and concentrated under reduced pressure. The residue was chromatographed (ether-light petroleum, 1:99) to give the iodide $61(7.85 \mathrm{~g}, 87 \%$ from 59$) ; v_{\max } / \mathrm{cm}^{-1} 1250,1100$, 835 and $775 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.64$ $0.88(1 \mathrm{H}, \mathrm{m}), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.96\left(1 \mathrm{H}, \mathrm{q}, J 12,2^{\prime}-\mathrm{H}^{\mathrm{ax}}\right)$, $1.1-1.4(3 \mathrm{H}, \mathrm{m}), 1.58(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}), 1.58-1.8(2 \mathrm{H}, \mathrm{m}), 1.8-2.0$ $(4 \mathrm{H}, \mathrm{m}), 1.92\left(2 \mathrm{H}, \mathrm{t}, J 7,3-\mathrm{H}_{2}\right), 2.1\left(2 \mathrm{H}, \mathrm{t}, J 7,6-\mathrm{H}_{2}\right), 3.15(2 \mathrm{H}$, $\left.\mathrm{t}, J 7,1-\mathrm{H}_{2}\right), 3.47-3.58\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$ and $5.21(1 \mathrm{H}$, br t, $J 7.5$, $5-\mathrm{H}) ; m / z(\mathrm{CI}) 437\left(\mathrm{M}^{+}+1,100 \%\right)$.

A solution of the iodide $61(970 \mathrm{mg}, 2 \mathrm{mmol})$ and triphenylphosphine ($600 \mathrm{mg}, 2.3 \mathrm{mmol}$) in DMF ($10 \mathrm{~cm}^{3}$) was heated under reflux for 6 h . The mixture was concentrated under reduced pressure, and the residue was triturated with ether until solid. This solid was recrystallised from THF, washed with ether, and dried in vacuo, to give the title compound 62, better used without purification.
(1RS,2SR,4SR,5SR)-Ethyl 2-\{(1'Z, $\left.3^{\prime} \mathrm{E}, 7^{\prime} \mathrm{E}\right)-9^{\prime}-\left[3^{\prime \prime}\right.$-(tert-But-yldimethylsiloxy)cyclohexyl]-1'-carboxy-7'-methylnona-1', $3^{\prime}, 7^{\prime}-$ trienyl \}-2-hydroxy-4-methoxy-5-methylcyclohexanecarboxylates 65 and 68.-LiHMDS $\left(2 \mathrm{~cm}^{3} ; 0.5 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in THFhexane) was added to a mixture of the phosphonium salt 62 [from $61(436 \mathrm{mg}, 1 \mathrm{mmol})$] and $\operatorname{THF}\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After 1 h , the solution was added to a solution of the hydroxybutenolide $40(153 \mathrm{mg}, 0.49 \mathrm{mmol})$ in THF ($10 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ which had previously been treated with LiHMDS ($2 \mathrm{~cm}^{3} ; 0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF-hexane). The mixture was allowed to warm to ambient temperature, and saturated aq. ammonium chloride ($20 \mathrm{~cm}^{3}$)
was added. The organic phase was separated, and the aqueous phase was extracted with ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. The residue was chromatographed to give a mixture of the conjugated dienes 63, 64, 65, and $68(256 \mathrm{mg}$, 86%) as a $6: 1$ mixture of $\left(3^{\prime} Z\right)$ - and ($\left.3^{\prime} E\right)$-isomers; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3475,3400-2400,1700,1630,1380,1260$, 1180 and $1095 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)\left(3^{\prime} Z\right)$-isomers 63 and 64; 0.08 ($6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.85(1 \mathrm{H}, \mathrm{m}), 0.9\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}\right), 0.97$ ($\left.1 \mathrm{H}, \mathrm{q}, J 12.5,2^{\prime \prime}-\mathrm{H}^{\mathrm{ax}}\right), 1.07(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH} M e), 1.0-1.4(3 \mathrm{H}, \mathrm{m})$, 1.21 ($3 \mathrm{H}, \mathrm{t} \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{Me}$), 1.59 ($3 \mathrm{H}, \mathrm{br} \mathrm{s}, 7^{\prime}-\mathrm{Me}$), $1.5-2.0(10 \mathrm{H}$, $\mathrm{m}), 2.1(2 \mathrm{H}, \mathrm{m}), 2.25\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and 4, 3-H $\left.\mathrm{H}^{\mathrm{eq}}\right), 2.33-2.45(2 \mathrm{H}$, $\mathrm{m}), 3.17-3.27(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 4-\mathrm{H}), 3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.47-3.6$ ($\left.1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}\right), 4.05-4.2\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 4.6(1 \mathrm{H}, \mathrm{brs}, 2-\mathrm{OH})$, $5.18\left(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6,8^{\prime}-\mathrm{H}\right), 5.78\left(1 \mathrm{H}, \mathrm{dt}, J 11\right.$ and $\left.7,4^{\prime}-\mathrm{H}\right), 6.58$ ($1 \mathrm{H}, \mathrm{t}, J 11.5,3^{\prime}-\mathrm{H}$) and $7.09\left(1 \mathrm{H}, \mathrm{d}, J 12,2^{\prime}-\mathrm{H}\right) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ $607\left(\mathrm{M}^{+}+1,100 \%\right)$.
The mixture of conjugated dienes $63,64,65$ and 68 was dissolved in benzene ($10 \mathrm{~cm}^{3}$) and iodine ($100 \mathrm{~mm}^{3} ; 0.2 \mathrm{~mol}$ dm^{-3} in benzene) was added. After 24 h , the benzene and the iodine were removed under reduced pressure to leave the title compounds 65 and $68(250 \mathrm{mg})$, now a $9: 1$ mixture of the ($3^{\prime} E$)and ($3^{\prime} Z$)-isomers; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3475,3600-2400,1700$, $1630,1380,1260,1180$ and $1095 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)\left(3^{\prime} E\right)$ isomers 65 and $68 ; 0.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.75(1 \mathrm{H}, \mathrm{m}), 0.92(9 \mathrm{H}$, $\mathrm{s}, \mathrm{SiCMe}_{3}$), $0.99\left(1 \mathrm{H}, \mathrm{q}, J 12,2^{\prime \prime}-\mathrm{H}^{\mathrm{ax}}\right), 1.00-1.33(3 \mathrm{H}, \mathrm{m}), 1.07$ ($3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CHMe}$), 1.23 ($3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}$), 1.6 ($3 \mathrm{H}, \mathrm{brs}, 7^{\prime}$ Me), $1.4-1.9(10 \mathrm{H}, \mathrm{m}), 2.05(2 \mathrm{H}, \mathrm{m}), 2.1-2.3(3 \mathrm{H}, \mathrm{m}), 3.22(1 \mathrm{H}$, td, $J 10$ and $4,4-\mathrm{H}), 3.27(1 \mathrm{H}, \mathrm{dd}, J 13$ and $4,1-\mathrm{H}), 3.39(3 \mathrm{H}, \mathrm{s}$, OMe), 3.49-3.64(1 H, m, 3"-H), 4.02-4.26(2 H, m, CH2Me), 4.63 ($1 \mathrm{H}, \mathrm{br}$ s, 2-OH), $5.17\left(1 \mathrm{H}, \mathrm{brt}, J 7,8^{\prime}-\mathrm{H}\right), 6.0(1 \mathrm{H}, \mathrm{dt}, J 14$ and $\left.6,4^{\prime}-\mathrm{H}\right)$ and $6.77-6.87\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ and $\left.3^{\prime}-\mathrm{H}\right) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 607$ $\left(\mathrm{M}^{+}+1,72 \%\right), 589(65)$ and 215 (100).
(1RS,2SR,4SR,5SR)-2-(Trimethylsilyl)ethyl $2-\left\{\left(1^{\prime} Z, 3^{\prime} \mathrm{E}, 7^{\prime}-\right.\right.$ E)-9'-[3"-(tert-Butyldimethylsiloxy)cyclohexyl $]-1$ '-methoxycar-bonyl-7'-methylnona-1', $3^{\prime}, 7^{\prime}$-trienyl \}-2-hydroxy-4-methoxy-5methylcyclohexanecarboxylates 67 and 70.-A solution of the ethyl esters 65 and $68(1.05 \mathrm{~g}, 1.73 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ was added to solution of 2-(trimethylsilyl)ethanol ($3 \mathrm{~cm}^{3}, 21 \mathrm{mmol}$) in THF ($25 \mathrm{~cm}^{3}$) containing butyllithium ($2 \mathrm{~cm}^{3} ; 1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane), and the mixture was heated under reflux for 4 h . Saturated aq. ammonium chloride ($30 \mathrm{~cm}^{3}$) was added, the organic phase was separated, and the aqueous phase was extracted with ether ($3 \times 30 \mathrm{~cm}^{3}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography (ether-light petroleum, 1:1) of the residue gave the 2-trimethylsilylethyl esters 66 and $69(620 \mathrm{mg}$, $53 \%) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3460,3600-2400,1700,1630,1260$, 1180 and 1095; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.08$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), 0.89 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}$), 0.67-1.38 ($7 \mathrm{H}, \mathrm{m}$), 1.06 (3 $\mathrm{H}, \mathrm{d}, J 6, \mathrm{CH} M e), 1.59\left(3 \mathrm{H}, \mathrm{s}, 7^{\prime}-\mathrm{Me}\right), 1.45-1.98(10 \mathrm{H}, \mathrm{m}), 2.05-$ $2.35(5 \mathrm{H}, \mathrm{m}), 3.2(1 \mathrm{H}, \mathrm{td}, J 10$ and $4,4-\mathrm{H}), 3.25(1 \mathrm{H}, \mathrm{dd}, J 13$ and 4, 1-H), 3.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.47-3.6 ($1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}$), 4.12-4.18 (2 $\mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}$), $4.58(1 \mathrm{H}, \mathrm{brs}, 2-\mathrm{OH}), 5.16\left(1 \mathrm{H}\right.$, br t, $\left.J^{\prime} 7,8^{\prime}-\mathrm{H}\right)$, $6.05\left(1 \mathrm{H}, \mathrm{dt}, J 13\right.$ and $6,4^{\prime}-\mathrm{H}$) and 6.78-6.9 ($2 \mathrm{H}, \mathrm{m}, 2^{\prime}$-and $3^{\prime}-\mathrm{H}$).
This material was dissolved in ether ($25 \mathrm{~cm}^{3}$) and treated with an excess of diazomethane. After 1 h , acetic acid was added to destroy the excess of diazomethane, and the mixture was concentrated under reduced pressure to leave the title compounds 67 and 70 ($625 \mathrm{mg}, 52 \%$ from 65 and 68); $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3460,1700,1260,1180$ and 1095; $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.08\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.8(9 \mathrm{H}$, $\mathrm{s}, \mathrm{SiCMe}_{3}$), 0.65-1.4 (7 H, m), 1.04 ($3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CHMe}$), 1.59 ($\left.3 \mathrm{H}, \mathrm{s}, 7^{\prime}-\mathrm{Me}\right), 1.45-1.95(10 \mathrm{H}, \mathrm{m}), 2.05-2.35(5 \mathrm{H}, \mathrm{m}), 3.06(1 \mathrm{H}$, dd, $J 13$ and 4, 1-H), 3.18 ($1 \mathrm{H}, \mathrm{td}, J 10$ and $4,4-\mathrm{H}$), $3.35(3 \mathrm{H}, \mathrm{s}$, OMe), $3.45-3.6\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}\right), 3.8\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.05-4.2$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.38(1 \mathrm{H}, \mathrm{d}, J 2.5,2-\mathrm{OH}), 5.16(1 \mathrm{H}, \mathrm{brt}, J 7$,
$\left.8^{\prime}-\mathrm{H}\right), 5.97\left(1 \mathrm{H}, \mathrm{dt}, J 15\right.$ and $\left.7,4^{\prime}-\mathrm{H}\right), 6.38(1 \mathrm{H}, \mathrm{dd}, J 15$ and 10 , $\left.3^{\prime}-\mathrm{H}\right)$ and $6.67\left(1 \mathrm{H}, \mathrm{d}, J 11,2^{\prime}-\mathrm{H}\right) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 693\left(\mathrm{M}^{+}+1\right.$, $5 \%), 692\left(\mathrm{M}^{+}, 5 \%\right)$ and $615(100)$.
(1RS,4RS,6SR,7SR,9SR,19RS,10Z,12E,16E)-Methyl 9 -Hydroxy-7-methoxy-6,16-dimethyl-3-oxo-2-oxatricyclo[17.3.1.0 ${ }^{4.9}$] tricosa-10,12,16-triene-10-carboxylate 73.Tetrabutylammonium fluoride (TBAF) $\left(1.6 \mathrm{~cm}^{3} ; 1 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in THF) was added to a mixture of esters 67 and $70(450 \mathrm{mg}, 0.65$ mmol) and potassium fluoride ($244 \mathrm{mg}, 2.6 \mathrm{mmol}$) in THF (15 cm^{3}), and the mixture was stirred for 4 h . Hydrochloric acid (5 $\mathrm{cm}^{3} ; 3 \mathrm{~mol} \mathrm{dm}^{-3}$) was added, and the mixture was stirred for 3 h . The organic phase was separated, and the aqueous phase was extracted with ether ($3 \times 10 \mathrm{~cm}^{3}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure. Chromatography (light petroleum-ether-acetic acid $40: 60: 2$) gave the dihydroxy acids 71 and 72 ($278 \mathrm{mg}, 93 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450,1710,1190$ and $1090 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 0.8-2.4 (20 H , complex m), $1.04(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CHMe}$), $1.55\left(3 \mathrm{H}, \mathrm{s}, 7^{\prime}-\mathrm{Me}\right), 3.07(1 \mathrm{H}, \mathrm{td}, J 10$ and 4, 4-H), 3.1-3.23(1 $\mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.35(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.5-3.7\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}\right), 3.8(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.8-5.3\left(4 \mathrm{H}, \mathrm{m}, 8^{\prime}-\mathrm{H}\right.$ and OH$), 5.85-6.0(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}\right), 6.34\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$ and 6.6 and 6.62 (each $1 \mathrm{H}, \mathrm{d}, J 11$, $2^{\prime}-\mathrm{H}$).

A solution of the dihydroxy acids 71 and $72(300 \mathrm{mg}, 0.63$ mmol) in dichloromethane ($30 \mathrm{~cm}^{3}$) and a solution of triethylamine ($145 \mathrm{~mm}^{3}, 1 \mathrm{mmol}$) in dichloromethane ($30 \mathrm{~cm}^{3}$) were added simultaneously to a stirred suspension of 2-chloro-N-methyl-pyridinium iodide ($670 \mathrm{mg}, 2.8 \mathrm{mmol}$) in dichloromethane ($200 \mathrm{~cm}^{3}$) during 6 h . After a further 8 h , the mixture was concentrated under reduced pressure. Chromatography of the residue (ether-light petroleum-acetic acid 50:50:2) gave the title compound 73 ($63 \mathrm{mg}, 22 \%$), recrystallized from hexane as prisms, m.p. $145-146^{\circ} \mathrm{C}$ (Found: C, 70.4; H, 8.55. $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{6}$ requires $\mathrm{C}, 70.40 ; 8.75 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450,1710,1190$, 1180 and $1090 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.56(1 \mathrm{H}, \mathrm{td}, J 13$ and 11.5 , $\left.23-\mathrm{H}^{\mathrm{ax}}\right), 0.83-0.92\left(1 \mathrm{H}, \mathrm{m}, 21-\mathrm{H}^{\mathrm{ax}}\right), 1.06$ ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}$), $1.26-1.36\left(2 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}^{\mathrm{ax}}\right.$ and $\left.21-\mathrm{H}^{\mathrm{eq}}\right), 1.38(1 \mathrm{H}, \mathrm{qq}, J 11.5$ and $3.5,19-\mathrm{H}$), $1.47-1.55(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 1.58$ ($1 \mathrm{H}, \mathrm{td}, J 10.5$ and 3 , $8-\mathrm{H}), 1.58(3 \mathrm{H}, \mathrm{s}, 16-\mathrm{Me}), 1.64\left(1 \mathrm{H}, \mathrm{m}, 20-\mathrm{H}^{\mathrm{eq}}\right), 1.73(1 \mathrm{H}, \mathrm{m}, 23-$ $\left.\mathrm{H}^{\text {eq }}\right), 1.74\left(1 \mathrm{H}, \mathrm{q}, J 12.5,5-\mathrm{H}^{\mathrm{ax}}\right), 1.77-1.88\left(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}^{\mathrm{eq}}, 18-\mathrm{H}\right.$ and $22-\mathrm{H}_{2}$), $2.03(1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}), 2.05-2.11(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 2.21$ $\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.4.5,8-\mathrm{H}^{\mathrm{eq}}\right), 2.24-2.35\left(3 \mathrm{H}, \mathrm{m}, 14-\mathrm{H}_{2}\right.$ and $15-\mathrm{H}), 3.20(1 \mathrm{H}, \mathrm{dd}, J 13$ and $4.5,4-\mathrm{H}), 3.21(1 \mathrm{H}, \mathrm{td}, J 10.5$ and $4.5,7-\mathrm{H}), 3.35(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{OMe}), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.69(1 \mathrm{H}$, d, $J 3, \mathrm{OH}), 4.77(1 \mathrm{H}, \mathrm{tt}, J 11.5$ and $4,1-\mathrm{H}), 4.9(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H})$, $5.79(1 \mathrm{H}$, ddd, $J 15.5,12$ and $5.5,13-\mathrm{H}), 6.27$ (1 H , ddd, $J 15.5$, 11.5 and $1,12-\mathrm{H})$ and $6.55(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $1,11-\mathrm{H}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ $460\left(\mathrm{M}^{+}, 32 \%\right), 443$ (100) and 411 (45).
(1RS,4RS,6SR,7SR,9SR,19RS,10E, 12E, 16E)-9-Hydroxy-10-hydroxymethyl-7-methoxy-6,16-dimethyl-2-oxatricyclo-
[17.3.1.0 ${ }^{4,9}$]tricosa-10,12,16-trien-3-one 74.-Lithium bis-(2methoxyethoxy)aluminium hydride (REDAL-H) $\left(1 \mathrm{~cm}^{3} ; 0.1\right.$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$ in toluene) was added to a solution of the ester 73 (15 $\mathrm{mg}, 0.033 \mathrm{mmol}$) in toluene $\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After 1 h , saturated aq. ammonium chloride was added, and the organic phase was separated. The aqueous phase was extracted with ether (5×5 cm^{3}), and the combined organic phases were dried (MgSO_{4}), and concentrated under reduced pressure. Chromatography (ether-hexane, 1:3) of the residue gave the title compound 74 (12 $\mathrm{mg}, 85 \%$) as a solid when recrystallised as prisms from hexaneether, m.p. $154-156^{\circ} \mathrm{C}$ (Found: C, 72.05 ; H, 9.3. $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{5}$ requires $\mathrm{C}, 72.2 ; \mathrm{H}, 9.3 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3610,3480,1710$, $1460,1400,1200,1180,1100,1020,1010$ and $985 ; \delta_{\mathbf{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.59\left(1 \mathrm{H}, \mathrm{q}, J 11.5,23-\mathrm{H}^{\mathrm{ax}}\right), 0.82-0.97\left(1 \mathrm{H}, \mathrm{m}, 21-\mathrm{H}^{\mathrm{ax}}\right)$, 1.15-2.4 (19 H , complex m), 1.07 ($3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{CHMe}$), 1.6 (3 H , s, $16-\mathrm{Me}), 2.75(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $7.5,4-\mathrm{H}), 3.21(1 \mathrm{H}, \mathrm{td}, J 10.5$
and 4.5, 7-H), $3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) 4.06(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{OH}), 4.2-$ $4.28(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2 \mathrm{OH}), 4.78-4.86(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.93(1 \mathrm{H}, \mathrm{m}$, $17-\mathrm{H}), 5.62-5.71(1 \mathrm{H}, \mathrm{m}, 13-\mathrm{H})$ and $6.2-6.3(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{and}$ $12-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (CI) $415(100 \%)$.

Acknowledgements

We thank the SERC and ICI Agrochemicals for a CASE Award (to M. J. H.) and Dr. M. D. Turnbull (ICI Agrochemicals) for many helpful discussions.

References

1 H. G. Davies and R. H. Green, Nat. Prod. Rep., 1986, 3, 87.
2 H. G. Davies and R. H. Green, Chem. Soc. Rev., 1991, 20, $211,271$.
3 H. Mishima, J. Ide, S. Muramatsu and M. Ono, J. Antibiot. (Tokyo), 1983, 36, 980.
4 R. W. Burg, B. M. Miller, E. E. Baker, J. Birnbaum, S. A. Currie, R. Hartman, Y.-L. Kong, R. L. Monaghan, G. Olson, I. Putter, J. B. Tunac, H. Wallick, E. O. Stapley, R. Oiwa and S. Omura, Antimicrob. Agents Chemother., 1979, 15, 361; T. W. Miller, L. Chaiet, D. J. Cole, L. J. Cole, J. E. Flor, R. T. Goegelman, V. P. Gullo, H. Joshua, A. J. Kempf, W. R. Krellwitz, R. L. Monaghan, R. E. Ormond, K. E. Wilson, G. Albers-Schönberg and I. Putter, Antimicrob. Agents Chemother., 1979, 15, 368.
5 H. Mishima, M. Kurabayashi, C. Tamura, S. Sato, H. Kuwano and A. Saito, Tetrahedron Lett., 1975, 711.

6 S. R. Schow, J. D. Bloom, A. S. Thompson, K. N. Winzenberg and A. B. Smith, III, J. Am. Chem. Soc., 1986, 108, 2662; D. R. Williams, B. A. Barner, K. Nishitani and J. G. Phillips, J. Am. Chem. Soc., 1982, 104, 4708; A. G. M. Barrett, R. A. E. Carr, S. V. Attwood, G. Richardson and N. D. A. Walshe, J. Org. Chem., 1986, 51, 4840; R. Baker, M. J. O'Mahoney and C. J. Swain, J. Chem. Soc., Perkin Trans. 1, 1987, 1623; P. J. Kocienski, S. D. A. Street, C. Yeates and S. F. Campbell, J. Chem. Soc., Perkin Trans. 1, 1987, 2171; P. J. Kocienski, C. Yeates, S. D. A. Street and S. F. Campbell, J. Chem. Soc., Perkin Trans 1, 1987, 2183; P. J. Kocienski, S. D. A. Street, C. Yeates and S. F. Campbell, J. Chem. Soc., Perkin Trans 1, 1987, 2189; M. T. Crimmins, D. M. Bankaitis-Davis and W. G. Hollis, Jr., J. Org. Chem., 1988, 53, 652.

7 S. V. Ley, N. J. Anthony, A. Armstrong, M. G. Brasca, T. Clarke, D. Culshaw, C. Greck, P. Grice, A. B. Jones, B. Lygo, A. Madin, R. N. Sheppard, A. M. Z. Slawin and D. J. Williams, Tetrahedron, 1989, 45, 7161; E. R. Parmee, P. G. Steel and E. J. Thomas, J. Chem. Soc., Chem. Commun., 1989, 1250.
8 S. Hanessian, A. Ugolini, P. J. Hodges, P. Beaulieu, D. Dube and C. Andre, Pure Appl. Chem., 1987, 59, 299; S. J. Danishefsky, D. M. Armistead, F. E. Wincott, H. G. Selnick and R. Hungate, J. Am. Chem. Soc., 1989, 111, 2967; J. D. White and G. L. Bolton,
J. Am. Chem. Soc., 1990, 112, 1626; S. V. Ley, A. Armstrong, D. Diez-Martin, M. J. Ford, P. Grice, J. G. Knight, H. C. Kolb, A. Madin, C. A. Marby, S. Mukherjee, A. N. Shaw, A. M. Z. Slawin, S. Vile, A. D. White, D. J. Williams and M. Woods, J. Chem. Soc. Perkin Trans. I, 1991, 667; M. Hirama, T. Noda, S. Yasuda and S. Ito, J. Am. Chem. Soc., 1991, 113, 1830; J. P. Ferezou, M. Julia, L. W. Liu and A. Pancraz; Synlett, 1991, 614.
9 Preliminary communication: M. J. Hughes, E. J. Thomas, M. D. Turnbull, R. H. Jones and R. E. Warner, J. Chem. Soc., Chem. Commun., 1985, 755.
10 M. D. Turnbull, G. Hatter and D. E. Ledgerwood, Tetrahedron Lett., 1984, 25, 5449; I. T. Kay and M. D. Turnbull, in Recent Advances in the Chemistry of Insect Control, ed. N. F. Jones, The Royal Society of Chemistry, Special Publication No. 53, London, 1985, p. 229.
11 K. L. Cook and A. J. Waring, J. Chem. Soc., Perkin Trans. 1, 1973, 529.
12 A. K. Saksena and P. Mangiaracina, Tetrahedron Lett., 1983, 24, 273.
13 M. N. Sheng and J. G. Zajacek, J. Org. Chem., 1970, 35, 1839.
14 S. V. Ley and M. Mahon, Tetrahedron Lett., 1981, 22, 4747.
15 M. Franck-Neumann and C. Berger, Bull. Soc. Chim. Fr., 1968, 4067; A. W. Johnson, G. Gowda, A. Hassanali, J. Knox, S. Monaco, Z. Razavi and G. Rosebery, J. Chem. Soc., Perkin Trans. I, 1981, 1734.

16 D. Goldsmith, D. Liotta, M. Saindane, L. Waykole and P. Bowen, Tetrahedron Lett., 1983, 24, 5835.
17 S. Katsumura, K. Hori, S. Fujiwara and S. Isoe, Tetrahedron Lett., 1985, 26, 4625.
18 S. V. Mortlock, N. A. Stacey and E. J. Thomas, J. Chem. Soc., Chem. Comтип., 1987, 880.
19 P. S. Steyn, W. J. Conradie, C. F. Garbers and M. J. De Vries, J. Chem. Soc., 1965, 3075; W. J. Conradie, C. F. Garbers and P. S. Steyn, J. Chem. Soc., 1964, 594.

20 F.W.Machado-Araujoand J. Gore, Tetrahedron Lett., 1981, 22, 1969.
21 W. R. Roush and T. A. Blizzard, J. Org. Chem., 1984, 49, 1772; J. D. White, J. P. Carter and H. S. Kezar, III, J. Org. Chem., 1982, 47, 929.

22 M. Schlosser and K. F. Christmann, Angew. Chem., Int. Edn. Engl., 1966, 5, 126.
23 S. Ayral-Kaloustian and W. C. Agosta, J. Org. Chem., 1982, 47, 284.
24 T. Mukaiyama, M. Usui and K. Saigo, Chem. Lett., 1976, 49.
25 G. Khandekar, G. C. Robinson, N. A. Stacey, P. G. Steel, E. J. Thomas and S. Vather, J. Chem. Soc., Chem. Commun., 1987, 877.

26 E. Merifield, P. G. Steel and E. J. Thomas, J. Chem. Soc., Chem. Commun., 1987, 1826.
27 S. Karim, E. R. Parmee and E. J. Thomas, Tetrahedron Lett., 1991, 32, 2269.
28 S. Bailey, S. Karim and E. J. Thomas, Synlett, 1992, 840.
Paper 3/00522D
Received 27th January 1993
Accepted 9th February 1993

[^0]: \dagger Present address: The Department of Chemistry, The Victoria
 University of Manchester, Oxford Road, Manchester, M13 9PL, UK

[^1]: \ddagger The numbering system used in this discussion relates to that used for the milbemycins and avermectins. IUPAC numbering is used in the Experimental section.

